首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Variational 3D Shape Segmentation for Bounding Volume Computation   总被引:1,自引:0,他引:1  
We propose a variational approach to computing an optimal segmentation of a 3D shape for computing a union of tight bounding volumes. Based on an affine invariant measure of e-tightness, the resemblance to ellipsoid, a novel functional is formulated that governs an optimization process to obtain a partition with multiple components. Refinement of segmentation is driven by application-specific error measures, so that the final bounding volume meets pre-specified user requirement. We present examples to demonstrate the effectiveness of our method and show that it works well for computing ellipsoidal bounding volumes as well as oriented bounding boxes.  相似文献   

2.
This paper deals with the reconstruction of 2‐dimensional geometric shapes from unorganized 1‐dimensional cross‐sections. We study the problem in its full generality following the approach of Boissonnat and Memari [ [BM07] ] for the analogous 3D problem. We propose a new variant of this method and provide sampling conditions to guarantee that the output of the algorithm has the same topology as the original object and is close to it (for the Hausdorff distance).  相似文献   

3.
We present an unsupervised algorithm for aligning a pair of shapes in the presence of significant articulated motion and missing data, while assuming no knowledge of a template, user‐placed markers, segmentation, or the skeletal structure of the shape. We explicitly sample the motion, which gives a priori the set of possible rigid transformations between parts of the shapes. This transforms the problem into a discrete labeling problem, where the goal is to find an optimal assignment of transformations for aligning the shapes. We then apply graph cuts to optimize a novel cost function, which encodes a preference for a consistent motion assignment from both source to target and target to source. We demonstrate the robustness of our method by aligning several synthetic and real‐world datasets.  相似文献   

4.
We present a robust and efficient algorithm for the pairwise non‐rigid registration of partially overlapping 3D surfaces. Our approach treats non‐rigid registration as an optimization problem and solves it by alternating between correspondence and deformation optimization. Assuming approximately isometric deformations, robust correspondences are generated using a pruning mechanism based on geodesic consistency. We iteratively learn an appropriate deformation discretization from the current set of correspondences and use it to update the correspondences in the next iteration. Our algorithm is able to register partially similar point clouds that undergo large deformations, in just a few seconds. We demonstrate the potential of our algorithm in various applications such as example based articulated segmentation, and shape interpolation.  相似文献   

5.
We present an unsupervised method for registering range scans of deforming, articulated shapes. The key idea is to model the motion of the underlying object using a reduced deformable model. We use a linear skinning model for its simplicity and represent the weight functions on a regular grid localized to the surface geometry. This decouples the deformation model from the surface representation and allows us to deal with the severe occlusion and missing data that is inherent in range scan data. We formulate the registration problem using an objective function that enforces close alignment of the 3D data and includes an intuitive notion of joints. This leads to an optimization problem that we solve using an efficient EM-type algorithm. With our algorithm we obtain smooth deformations that accurately register pairs of range scans with significant motion and occlusion. The main advantages of our approach are that it does not require user specified markers, a template, nor manual segmentation of the surface geometry into rigid parts.  相似文献   

6.
We present a registration algorithm for pairs of deforming and partial range scans that addresses the challenges of non‐rigid registration within a single non‐linear optimization. Our algorithm simultaneously solves for correspondences between points on source and target scans, confidence weights that measure the reliability of each correspondence and identify non‐overlapping areas, and a warping field that brings the source scan into alignment with the target geometry. The optimization maximizes the region of overlap and the spatial coherence of the deformation while minimizing registration error. All optimization parameters are chosen automatically; hand‐tuning is not necessary. Our method is not restricted to part‐in‐whole matching, but addresses the general problem of partial matching, and requires no explicit prior correspondences or feature points. We evaluate the performance and robustness of our method using scan data acquired by a structured light scanner and compare our method with existing non‐rigid registration algorithms.  相似文献   

7.
We propose a framework for 3D geometry processing that provides direct access to surface curvature to facilitate advanced shape editing, filtering, and synthesis algorithms. The central idea is to map a given surface to the curvature domain by evaluating its principle curvatures, apply filtering and editing operations to the curvature distribution, and reconstruct the resulting surface using an optimization approach. Our system allows the user to prescribe arbitrary principle curvature values anywhere on the surface. The optimization solves a nonlinear least‐squares problem to find the surface that best matches the desired target curvatures while preserving important properties of the original shape. We demonstrate the effectiveness of this processing metaphor with several applications, including anisotropic smoothing, feature enhancement, and multi‐scale curvature editing.  相似文献   

8.
Adaptive Space Deformations Based on Rigid Cells   总被引:5,自引:0,他引:5  
We propose a new adaptive space deformation method for interactive shape modeling. A novel energy formulation based on elastically coupled volumetric cells yields intuitive detail preservation even under large deformations. By enforcing rigidity of the cells, we obtain an extremely robust numerical solver for the resulting nonlinear optimization problem. Scalability is achieved using an adaptive spatial discretization that is decoupled from the resolution of the embedded object. Our approach is versatile and easy to implement, supports thin-shell and solid deformations of 2D and 3D objects, and is applicable to arbitrary sample-based representations, such as meshes, triangle soups, or point clouds.  相似文献   

9.
Given a 3D solid model S represented by a tetrahedral mesh, we describe a novel algorithm to compute a hierarchy of convex polyhedra that tightly enclose S. The hierarchy can be browsed at interactive speed on a modern PC and it is useful for implementing an intuitive feature selection paradigm for 3D editing environments. Convex parts often coincide with perceptually relevant shape components and, for their identification, existing methods rely on the boundary surface only. In contrast, we show that the notion of part concavity can be expressed and implemented more intuitively and efficiently by exploiting a tetrahedrization of the shape volume. The method proposed is completely automatic, and generates a tree of convex polyhedra in which the root is the convex hull of the whole shape, and the leaves are the tetrahedra of the input mesh. The algorithm proceeds bottom‐up by hierarchically clustering tetrahedra into nearly convex aggregations, and the whole process is significantly fast. We prove that, in the average case, for a mesh of n tetrahedra O(n log2 n) operations are sufficient to compute the whole tree.  相似文献   

10.
This paper proposes new methodology for the detection and matching of salient points over several views of an object. The process is composed by three main phases. In the first step, detection is carried out by adopting a new perceptually‐inspired 3D saliency measure. Such measure allows the detection of few sparse salient points that characterize distinctive portions of the surface. In the second step, a statistical learning approach is considered to describe salient points across different views. Each salient point is modelled by a Hidden Markov Model (HMM), which is trained in an unsupervised way by using contextual 3D neighborhood information, thus providing a robust and invariant point signature. Finally, in the third step, matching among points of different views is performed by evaluating a pairwise similarity measure among HMMs. An extensive and comparative experimental session has been carried out, considering real objects acquired by a 3D scanner from different points of view, where objects come from standard 3D databases. Results are promising, as the detection of salient points is reliable, and the matching is robust and accurate.  相似文献   

11.
We present a novel approach to parameterize a mesh with disk topology to the plane in a shape‐preserving manner. Our key contribution is a local/global algorithm, which combines a local mapping of each 3D triangle to the plane, using transformations taken from a restricted set, with a global “stitch” operation of all triangles, involving a sparse linear system. The local transformations can be taken from a variety of families, e.g. similarities or rotations, generating different types of parameterizations. In the first case, the parameterization tries to force each 2D triangle to be an as‐similar‐as‐possible version of its 3D counterpart. This is shown to yield results identical to those of the LSCM algorithm. In the second case, the parameterization tries to force each 2D triangle to be an as‐rigid‐as‐possible version of its 3D counterpart. This approach preserves shape as much as possible. It is simple, effective, and fast, due to pre‐factoring of the linear system involved in the global phase. Experimental results show that our approach provides almost isometric parameterizations and obtains more shape‐preserving results than other state‐of‐the‐art approaches. We present also a more general “hybrid” parameterization model which provides a continuous spectrum of possibilities, controlled by a single parameter. The two cases described above lie at the two ends of the spectrum. We generalize our local/global algorithm to compute these parameterizations. The local phase may also be accelerated by parallelizing the independent computations per triangle.  相似文献   

12.
13.
Context-Aware Skeletal Shape Deformation   总被引:1,自引:0,他引:1  
We describe a system for the animation of a skeleton-controlled articulated object that preserves the fine geometric details of the object skin and conforms to the characteristic shapes of the object specified through a set of examples. The system provides the animator with an intuitive user interface and produces compelling results even when presented with a very small set of examples. In addition it is able to generalize well by extrapolating far beyond the examples.  相似文献   

14.
Generation and animation of realistic humans is an essential part of many projects in today's media industry. Especially, the games and special effects industry heavily depend on realistic human animation. In this work a unified model that describes both, human pose and body shape is introduced which allows us to accurately model muscle deformations not only as a function of pose but also dependent on the physique of the subject. Coupled with the model's ability to generate arbitrary human body shapes, it severely simplifies the generation of highly realistic character animations. A learning based approach is trained on approximately 550 full body 3D laser scans taken of 114 subjects. Scan registration is performed using a non-rigid deformation technique. Then, a rotation invariant encoding of the acquired exemplars permits the computation of a statistical model that simultaneously encodes pose and body shape. Finally, morphing or generating meshes according to several constraints simultaneously can be achieved by training semantically meaningful regressors.  相似文献   

15.
In this paper, we introduce a novel coordinate‐free method for manipulating and analyzing vector fields on discrete surfaces. Unlike the commonly used representations of a vector field as an assignment of vectors to the faces of the mesh, or as real values on edges, we argue that vector fields can also be naturally viewed as operators whose domain and range are functions defined on the mesh. Although this point of view is common in differential geometry it has so far not been adopted in geometry processing applications. We recall the theoretical properties of vector fields represented as operators, and show that composition of vector fields with other functional operators is natural in this setup. This leads to the characterization of vector field properties through commutativity with other operators such as the Laplace‐Beltrami and symmetry operators, as well as to a straight‐forward definition of differential properties such as the Lie derivative. Finally, we demonstrate a range of applications, such as Killing vector field design, symmetric vector field estimation and joint design on multiple surfaces.  相似文献   

16.
Although considerable attention in recent years has been given to the problem of symmetry detection in general shapes, few methods have been developed that aim to detect and quantify the intrinsic symmetry of a shape rather than its extrinsic, or pose‐dependent symmetry. In this paper, we present a novel approach for efficiently computing symmetries of a shape which are invariant up to isometry preserving transformations. We show that the intrinsic symmetries of a shape are transformed into the Euclidean symmetries in the signature space defined by the eigenfunctions of the Laplace‐Beltrami operator. Based on this observation, we devise an algorithm which detects and computes the isometric mappings from the shape onto itself. We show that our approach is both computationally efficient and robust with respect to small non‐isometric deformations, even if they include topological changes.  相似文献   

17.
The computation of intrinsic, geodesic distances and geodesic paths on surfaces is a fundamental low‐level building block in countless Computer Graphics and Geometry Processing applications. This demand led to the development of numerous algorithms – some for the exact, others for the approximative computation, some focussing on speed, others providing strict guarantees. Most of these methods are designed for computing distances according to the standard Riemannian metric induced by the surface's embedding in Euclidean space. Generalization to other, especially anisotropic, metrics – which more recently gained interest in several application areas – is not rarely hampered by fundamental problems. We explore and discuss possibilities for the generalization and extension of well‐known methods to the anisotropic case, evaluate their relative performance in terms of accuracy and speed, and propose a novel algorithm, the Short‐Term Vector Dijkstra. This algorithm is strikingly simple to implement and proves to provide practical accuracy at a higher speed than generalized previous methods.  相似文献   

18.
We present a new technique to implement operators that modify the topology of polygonal meshes at intersections and self‐intersections. Depending on the modification strategy, this effectively results in operators for Boolean combinations or for the construction of outer hulls that are suited for mesh repair tasks and accurate mesh‐based front tracking of deformable materials that split and merge. By combining an adaptive octree with nested binary space partitions (BSP), we can guarantee exactness (= correctness) and robustness (= completeness) of the algorithm while still achieving higher performance and less memory consumption than previous approaches. The efficiency and scalability in terms of runtime and memory is obtained by an operation localization scheme. We restrict the essential computations to those cells in the adaptive octree where intersections actually occur. Within those critical cells, we convert the input geometry into a plane‐based BSP‐representation which allows us to perform all computations exactly even with fixed precision arithmetics. We carefully analyze the precision requirements of the involved geometric data and predicates in order to guarantee correctness and show how minimal input mesh quantization can be used to safely rely on computations with standard floating point numbers. We properly evaluate our method with respect to precision, robustness, and efficiency.  相似文献   

19.
We present a streaming method for reconstructing surfaces from large data sets generated by a laser range scanner using wavelets. Wavelets provide a localized, multiresolution representation of functions and this makes them ideal candidates for streaming surface reconstruction algorithms. We show how wavelets can be used to reconstruct the indicator function of a shape from a cloud of points with associated normals. Our method proceeds in several steps. We first compute a low‐resolution approximation of the indicator function using an octree followed by a second pass that incrementally adds fine resolution details. The indicator function is then smoothed using a modified octree convolution step and contoured to produce the final surface. Due to the local, multiresolution nature of wavelets, our approach results in an algorithm over 10 times faster than previous methods and can process extremely large data sets in the order of several hundred million points in only an hour.  相似文献   

20.
Polyhedral meshes consisting of triangles, quads, and pentagons and polar configurations cover all major sampling and modeling scenarios. We give an algorithm for efficient local, parallel conversion of such meshes to an everywhere smooth surface consisting of low‐degree polynomial pieces. Quadrilateral facets with 4‐valent vertices are ‘regular’ and are mapped to bi‐cubic patches so that adjacent bi‐cubics join C2 as for cubic tensor‐product splines. The algorithm can be implemented in the vertex and geometry shaders of the GPU pipeline and does not use the fragment shader. Its implementation in DirectX 10 achieves conversion plus rendering at 659 frames per second with 42.5 million triangles per second on input of a model of 1300 facets of which 60% are not regular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号