首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
In this article, we propose a nonparametric procedure for validating the assumption of stationarity in multivariate locally stationary time series models. We develop a bootstrap‐assisted test based on a Kolmogorov–Smirnov‐type statistic, which tracks the deviation of the time‐varying spectral density from its best stationary approximation. In contrast to all other nonparametric approaches, which have been proposed in the literature so far, the test statistic does not depend on any regularization parameters like smoothing bandwidths or a window length, which is usually required in a segmentation of the data. We additionally show how our new procedure can be used to identify the components where non‐stationarities occur and indicate possible extensions of this innovative approach. We conclude with an extensive simulation study, which shows finite‐sample properties of the new method and contains a comparison with existing approaches.  相似文献   

2.
Abstract. Considering the generalized autoregressive conditionally heteroskedastic with stochastic mean (GARCH‐SM) model, we establish in this article the consistency and the weak representation of a functional of its residual empirical process. Based on this result, a symmetry test for GARCH‐SM model is developed. Simulations are given to show the asymptotic behaviour and normality of the test statistic.  相似文献   

3.
Abstract. In recent years, methods to estimate the memory parameter using wavelet analysis have gained popularity in many areas of science. Despite its widespread use, a rigorous semi‐parametric asymptotic theory, comparable with the one developed for Fourier methods, is still lacking. In this article, we adapt to the wavelet setting, the classical semi‐parametric framework introduced by Robinson and his co‐authors for estimating the memory parameter of a (possibly) non‐stationary process. Our results apply to a class of wavelets with bounded supports, which include but are not limited to Daubechies wavelets. We derive an explicit expression of the spectral density of the wavelet coefficients and show that it can be approximated, at large scales, by the spectral density of the continuous‐time wavelet coefficients of fractional Brownian motion. We derive an explicit bound for the difference between the spectral densities. As an application, we obtain minimax upper bounds for the log‐scale regression estimator of the memory parameter for a Gaussian process and we derive an explicit expression of its asymptotic variance.  相似文献   

4.
Abstract. We analyse asymptotic properties of the discrete Fourier transform and the periodogram of time series obtained through (truncated) linear filtering of stationary processes. The class of filters contains the fractional differencing operator and its coefficients decay at an algebraic rate, implying long‐range‐dependent properties for the filtered processes when the degree of integration α is positive. These include fractional time series which are nonstationary for any value of the memory parameter (α ≠ 0) and possibly nonstationary trending (α ≥ 0.5). We consider both fractional differencing or integration of weakly dependent and long‐memory stationary time series. The results obtained for the moments of the Fourier transform and the periodogram at Fourier frequencies in a degenerating band around the origin are weaker compared with the stationary nontruncated case for α > 0, but sufficient for the analysis of parametric and semiparametric memory estimates. They are applied to the study of the properties of the log‐periodogram regression estimate of the memory parameter α for Gaussian processes, for which asymptotic normality could not be showed using previous results. However, only consistency can be showed for the trending cases, 0.5 ≤ α < 1. Several detrending and initialization mechanisms are studied and only local conditions on spectral densities of stationary input series and transfer functions of filters are assumed.  相似文献   

5.
Abstract. In many situations, we want to verify the existence of a relationship between multivariate time series. Here, we propose a semiparametric approach for testing the independence between two infinite‐order vector autoregressive (VAR(∞)) series, which is an extension of Hong's [Biometrika (1996c) vol. 83, 615–625] univariate results. We first filter each series by a finite‐order autoregression and the test statistic is a standardized version of a weighted sum of quadratic forms in the residual cross‐correlation matrices at all possible lags. The weights depend on a kernel function and on a truncation parameter. Using a result of Lewis and Reinsel [Journal of Multivariate Analysis (1985) Vol. 16, pp. 393–411], the asymptotic distribution of the test statistic is derived under the null hypothesis and its consistency is also established for a fixed alternative of serial cross‐correlation of unknown form. Apart from standardization factors, the multivariate portmanteau statistic proposed by Bouhaddioui and Roy [Statistics and Probability Letters (2006) vol. 76, pp. 58–68] that takes into account a fixed number of lags can be viewed as a special case by using the truncated uniform kernel. However, many kernels lead to a greater power, as shown in an asymptotic power analysis and by a small simulation study in finite samples. A numerical example with real data is also presented.  相似文献   

6.
Abstract. Methods for parameter estimation in the presence of long‐range dependence and heavy tails are scarce. Fractional autoregressive integrated moving average (FARIMA) time series for positive values of the fractional differencing exponent d can be used to model long‐range dependence in the case of heavy‐tailed distributions. In this paper, we focus on the estimation of the Hurst parameter H = d + 1/α for long‐range dependent FARIMA time series with symmetric α‐stable (1 < α < 2) innovations. We establish the consistency and the asymptotic normality of two types of wavelet estimators of the parameter H. We do so by exploiting the fact that the integrated series is asymptotically self‐similar with parameter H. When the parameter α is known, we also obtain consistent and asymptotically normal estimators for the fractional differencing exponent d = H ? 1/α. Our results hold for a larger class of causal linear processes with stable symmetric innovations. As the wavelet‐based estimation method used here is semi‐parametric, it allows for a more robust treatment of long‐range dependent data than parametric methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号