首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objectives of this study were to prepare films from submicron chitosan/Eudragit® L100‐55 polyelectrolyte complexes (CH/EL PEC) and to assess the influence of CH molecular weight and CH/EL mass ratio on their structure and drug‐release properties. The films were obtained by a simple, environmentally friendly, casting/solvent evaporation method and the verapamil hydrochloride (VH) was used as model drug. Submicron size, narrow size distribution, and acceptable stability of CH/EL PECs were confirmed by DLS and laser Doppler microelectrophoresis. SEM analysis revealed nonporous inner structure and flat surface of the films. Interactions between comprising polymers and formation of CH/EL PEC were established by DSC and FT‐IR spectroscopy. In vitro swelling and drug release studies revealed the pH sensitivity of the films, with burst drug release in acidic conditions (pH 1.2) and sustained release in phosphate buffers pH 5.8, 6.8, and 7.4. The slowest VH release was achieved from the films prepared from equal amounts of EL and CH of higher molecular weight, confirming the significance of the CH/EL ratio and CH molecular weight on their ability to sustain drug release. The obtained results suggested that presented, simple, and eco‐friendly preparation procedure can be used to obtain pH‐sensitive CH/EL PEC films with a promising potential as drug carriers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42583.  相似文献   

2.
A series of polymer light emitting devices (PLEDs) based on the composite films of N‐arylbenzimidazoles trimer (TPBI), poly (n‐vinylcarbazole) (PVK), and a triarylaminooxadiazole‐containing tetraphenylsilane light emitting polymer (PTOA) were investigated. Electroluminescence (EL) performance is enhanced with doped TPBI into the light‐emitting layer for the PTOA‐based devices. A deep blue emission (Commission Internationale de L'Eclairage (CIEx,y) corodinates (0.16,0.06)) is obtained for the TPBI‐PTOA‐based device. Brightness and current efficiency of the TPBI‐PTOA‐based device can be as high as 961 cd/m2 and 1.85 cd/A, respectively. The EL performances of TPBI‐PTOA composite film‐based devices are further enhanced by inserting a TPBI layer into the light emitting layer and cathode interface for a better electron and hole charge balance. Doping TPBI into the light‐emitting layer of PVK‐PTOA is not favorable for enhanced EL performances. Brightness and current efficiency reduced with increasing TPBI content for the TPBI‐PVK‐PTOA‐based devices. Similar results are obtained for devices based on the TPBI‐PVK‐PTOA/TPBI bi‐layer composite solid film. Morphology and charge balance effects on EL performances of TPBI‐PTOA and TPBI‐PVK‐PTOA composite films based PLEDs are discussed in detail. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
We present a verification study of three simulation techniques for fluid–particle flows, including an Euler–Lagrange approach (EL) inspired by Jackson's seminal work on fluidized particles, a quadrature–based moment method based on the anisotropic Gaussian closure (AG), and the traditional two‐fluid model. We perform simulations of two problems: particles in frozen homogeneous isotropic turbulence (HIT) and cluster‐induced turbulence (CIT). For verification, we evaluate various techniques for extracting statistics from EL and study the convergence properties of the three methods under grid refinement. The convergence is found to depend on the simulation method and on the problem, with CIT simulations posing fewer difficulties than HIT. Specifically, EL converges under refinement for both HIT and CIT, but statistics exhibit dependence on the postprocessing parameters. For CIT, AG produces similar results to EL. For HIT, converging both TFM and AG poses challenges. Overall, extracting converged, parameter‐independent Eulerian statistics remains a challenge for all methods. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5396–5412, 2017  相似文献   

4.
The present work is carried out to understand the effect of free surface on liquid velocity distribution, dynamics and liquid phase mixing in a shallow basic oxygen furnace (BOF). Three‐dimensional/transient Euler–Lagrange (EL) without/with volume‐of‐fluid (VOF) simulations of dispersed gas–liquid flow in a scaled‐down model of the BOF were performed. For lower H/D ratios, EL simulations performed with no‐slip and free‐slip boundary conditions led to oscillatory plume behavior and higher liquid velocity regions which in turn led to lower mixing time. In contrast, EL + VOF simulations led to reduced meandering motion of bubble plumes and lower liquid velocities resulting in higher mixing times. Interestingly, the mixing time predicted using EL + VOF approach was found to be in a good agreement with the measurements. The results presented in this work show that free surface has a significant effect on dynamics of gas–liquid flow and liquid phase mixing for shallow vessels with H/D ≤ 0.5. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3582–3598, 2017  相似文献   

5.
Repeated firings can affect the quality of the porcelain color. The purpose of this study is to evaluate the effect of repeated firings on the color changes of porcelain‐fused‐metal restorations that are manufactured using different methods. A total of 60 cylindrical shaped cobalt–chromium alloys (Ø = 10 mm and h = 1.5 mm) were fabricated using casting (C), milling (M), direct metal laser sintering with and without annealing (EL+, EL‐), and selective laser melting with and without annealing (CL+, CL‐). The samples were veneered with A2 (as indicated by the Vita Shade Guide) dentin porcelain of 2 mm thickness. Then the samples subjected to the repeated firings (2nd, 4th, 6th, 8th, and 10th), and the color of each sample was recorded using a spectrophotometer. The CIEDE2000 (ΔE00) formula was used to calculate color differences of the samples on repeated firings. Repeated measures analysis of variance (ANOVA ) and post‐hoc Tukey's test were utilized to analyze the results (a = 05). The L*, a*, and b* values of porcelain‐fused‐metal specimens were significantly affected by the number of firings (P < 0.001) and fabrication techniques (P < 0.001). The ΔE00 values for C, M, CL‐, and EL‐ groups after 10th firing were above 0.8 unit, which indicates that visually perceivable color differences are clinically acceptable. On the other hand, the ΔE00 values for CL+ and EL+ groups were above the PT value after 8th repeated firings. The color properties of porcelain‐fused‐metal restorations were affected by the fabrication techniques and the number of firings.  相似文献   

6.
Stable pure‐blue electroluminescence (EL) is obtained from polymer light‐emitting devices by dispersing poly(9,9‐dioctylfluorene) (PFO) into a wide band‐gap mixed‐matrix of poly(9‐vinylcarbazole) (PVK):2‐(4‐biphenylyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole (PBD). From the EL spectra of the PFO‐doped films, we find that the additional green emission observed in the EL spectra of the pure PFO devices was significantly suppressed in the PFO‐doped devices. The spectral stability was also improved through evaluating the EL spectra of the PFO‐doped films annealed at different temperatures (from 80 to 150 °C). These results demonstrate that doping of PFO into a matrix to weaken the aggregate and oxidation of the PFO molecules is a simple strategy to suppress the green emission. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44950.  相似文献   

7.
Poly(fluorene‐co‐fluorenone)s containing high contents of fluorenone chromophore were synthesized by the Suzuki coupling reaction to study their electroluminescent (EL) properties. The copolymers are thermally stable below 430°C (Td) in nitrogen atmosphere. In film state, their absorption and photoluminescence spectra (peaked at 373–382 nm and 562–564 nm, respectively) are mainly originated from fluorenone units, because of its efficient energy transfer. Both LUMO and HOMO energy levels, estimated from their cyclic voltammograms, are lowered slightly (−3.17→−3.23 eV, −5.84→−5.89 eV) with increasing contents of electron‐withdrawing fluorenone units. Double‐layer EL devices, using the copolyfluorenes or their blends with poly(9,9‐dihexylfluorene) ( PF ) as emitting layer, show exclusive emission originated from fluorenone chromophore (565 nm) when its content is high. Blending 0.02–5 wt % of PF‐33 (fluorenone fraction: 0.37) with PF greatly enhances device performance (610 cd m−2 → 4400 cd m−2 and 0.45 cd A−1 → 1.52 cd A−1). Our results demonstrate that the copolyfluorenes are promising emitting materials for EL devices by simple blending. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Two luminescent block copolymers (PPVPEO200 and PPVPEO600), composed of poly(p‐phenylene‐vinylene) (PPV) segments with three phenylene vinylene units and poly(ethylene oxide) (PEO) segments with molecular weight of 200 and 600, respectively, have been successfully synthesized. The structures of the copolymers were verified using FTIR, 1H‐NMR, and elemental analysis. Single‐layer polymer light‐emitting electrochemical cells (LEC) devices fabricated on the bases of thin films of PPVPEO600 and on the bases of thin films of blends of PPVPEO200 with additional PEO both demonstrated good electroluminescent (EL) performance with the onset voltage of 2.6 V and EL efficiency of 0.64 cd/A and 0.68 cd/A at 3.2 V, respectively. Thermal analysis shows that the decomposition temperature of PPVPEO600 is about 305°C, which is higher than that of PPVPEO200 and PEO. AFM studies of PPVPEO600 thin films exhibits that the block copolymer self‐assembles to form nanoscale network structures with pseudo‐cross‐linking points, thus accounting for its high thermal stability and good EL performance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1118–1125, 2007  相似文献   

9.
Two soluble fluorescent polymers, poly(2‐decyloxy‐5‐(4′‐tert‐butylphenyl)‐1,4‐phenylenevinylene) (DtBP‐PPV) and poly(2‐decyloxy‐1,4‐phenylenevinylene) (DO‐PPV), were prepared by a method similar to the Gilch procedure. The DtBP‐PPV and DO‐PPV have a same chemical structure except for the conjugated tert‐bytulphenyl substituents in the former. The polymers are characterized by using 1H NMR, FTIR, UV–vis, photoluminescence (PL), and electroluminescence (EL) spectroscopies and thermogravimetric analysis (TGA). The 1H NMR spectra show no tolane‐bis‐benzyl (TBB) structure defects in DtBP‐PPV but some in DO‐PPV. Both UV–vis absorption and PL emission peaks of the DtBP‐PPV exhibit a red‐shift phenomenon as compared with those of the DO‐PPV. Moreover, with the DtBP‐PPV and DO‐PPV acting as light‐emitting polymers separately, EL devices were fabricated with a sequential lamination of ITO/PEDOT/DtBP‐PPV (or DO‐PPV)/Ca/Ag. The DtBP‐PPV‐based device shows a lower turn‐on voltage, a longer EL emission wavelength, and a higher brightness than the DO‐PPV‐based device. The maximum brightness of DtBP‐PPV‐based device is 57 cd/m2 at an applied voltage of 12 V. POLYM. ENG. SCI., 47:1380–1387, 2007. © 2007 Society of Plastics Engineers  相似文献   

10.
A novel series of well‐defined alternating poly[2,7‐(9,9‐di(2‐ethylhexyl)fluorenyl)‐alt‐pyridinyl] (PDEHFP) copolymers were synthesized using palladium(0)‐catalyzed Suzuki coupling reaction in high yields. These polymers were characterized using 1H NMR, UV‐visible and fluorescence spectroscopies, gel permeation chromatography, thermal analysis and cyclic voltammetry. The optical properties of the copolymers, including photoluminescence (PL) and electroluminescence (EL), were studied. The difference in linkage position of pyridinyl units in the polymer backbone has significant effects on the electronic and optical properties of polymers in solution and in film state. Meta‐linkage (3,5‐ and 2,6‐linkage) of pyridinyl units in the polymer backbone is more favorable for pure blue emission and prevention of aggregation of polymer chains. PDEHFPs with 2,6‐ and 3,5‐linkage of pyridinyl units have relatively high PL efficiency of 37 and 44% in the film state. In comparison with homopolymer PDEHF, the copolymers with pyridinyl units possess low lowest unoccupied molecular orbital energy levels for easy electron injection from a cathode. Strong EL is observed and light‐emitting diodes (LEDs) exhibit typical rectifying characteristics. The emission intensity starts to increase at around 12 V. The emission peak wavelengths of the polymers roughly coincide with those of PL. This series of fluorene–pyridine‐based alternating copolymers seem to be candidates for polymeric LEDs. © 2013 Society of Chemical Industry  相似文献   

11.
Two new poly(p‐phenylenevinylene) (PPV) derivatives containing oxadiazole moiety (OXA‐PPV1 and OXA‐PPV2) were synthesized by the Wittig condensation polymerization reaction. Their thermal and light‐emitting properties were investigated. The single‐ and triple‐layer electroluminescent (EL) devices with configurations of ITO/polymer/Al and ITO/polymer/OXD‐7/Alq3/Al were fabricated. They exhibited blue emission at 470 nm for OXA‐PPV1 and green emission at 560 nm for OXA‐PPV2. The turn‐on voltages of triple‐layer device were 11 V for OXA‐PPV1 and 8 V for OXA‐PPV2. The triple‐layer EL devices showed much better performance than did the single‐layer devices. The spectra indicated energy transfer occurred from segments of side chain to polymer backbone. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 422–428, 2002  相似文献   

12.
In this work, we report on the electrical properties of dye‐doped colour tunable organic light‐emitting diode (OLED). The device structure is glass substrate/indium tin oxide/N,N′‐di(naphthalen‐1‐yl)‐N,N′‐diphenyl‐benzidine (NPB) 30 nm/Alq3:DCM 50 nm/Aluminum (Al) 150 nm where NPB is the hole transport layer. Alq3:DCM is the emitting layer which made of tris(8‐hydroxyquinoline) aluminium (Alq3) doped with 4‐(Dicyanomethylene)‐2‐methyl‐6‐(4‐dimethyl‐aminostyryl)‐4H‐pyran (DCM) organic dye. The influence of doping concentration has been investigated by current density–voltage measurement, luminance intensity–voltage characteristic, electroluminescence (EL) and impedance spectroscopy, respectively. The EL spectrum exhibits the shifted of peak position from green to red region. The threshold voltage of the device decreased at the low DCM doping concentration (1 wt.%), in contrast, when the increase in the doping concentrations then the threshold voltage will be increased. The highest luminance intensity and lowest turn‐on voltage of OLED can be observed at doping concentration about of 1 wt.% of DCM. The impedance characteristics of the dye‐doped OLED can be modelled by simply adopting the conventional equivalent circuit with the simple combination of resistors and capacitors network. © 2012 Canadian Society for Chemical Engineering  相似文献   

13.
Two new poly(p‐phenylenevinylene) (PPV) derivatives containing the oxadiazole moiety (OXA–PPV1 and OXA–PPV2) were synthesized by the Wittig condensation polymerization reaction and their thermal and light‐emitting properties were investigated. The single‐layer and triple‐layer electroluminescent (EL) devices with configurations of ITO/OXA–PPV1/Al and ITO/OXA–PPV1/OXD/Alq3/Al were fabricated. They both exhibited blue emission at 460 nm. For comparison, the PPV derivative containing the oxadiazole moiety only in the side chains (OXA–PPV2) was also synthesized. Both single‐layer and triple‐layer EL devices with OXA–PPV2 as the emissive layer emitted green‐light at 560 nm. The turn‐on voltages of the triple‐layer device was 11 V for OXA–PPV1 and 8 V for OXA–PPV2. The triple‐layer EL devices showed much better performance than that of the single‐layer devices. The spectra indicated that energy or electron transfer occurred from the side‐chain oxadiazole to the main‐chain styrene unit. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2424–2428, 2002  相似文献   

14.
New method of synthesis of water‐soluble polymer‐drug conjugates, exhibiting remarkable anticancer activity in mice models, has been developed. In the conjugates, an anticancer drug doxorubicin (DOX) is attached to a polymer carrier based on N‐(2‐hydroxypropyl)methacrylamide (HPMA) copolymer via a hydrolytically labile hydrazone bond. New methacrylamide‐type comonomers, containing either hydrazide group or hydrazon of DOX, were used for copolymerization with HPMA. In contrast to the synthetic procedure described earlier the new method is simpler, cheaper, and results in a better‐defined conjugate structure. The conjugates are fairly stable in buffer at pH 7.4 (model of blood stream) but release DOX under mild acid conditions modeling the tumor microenvironment. The conjugates showed significant in vivo antitumor activity in treatment of T‐cell lymphoma EL‐4 bearing mice with up to 100% long‐term survivors. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Two new poly(arylene ethynylenes) were synthesized by the reaction of 1,4‐diethynyl‐2.5‐dioctylbenzene either with 4,4′‐diiodo‐3,3′‐dimethyl‐1,1′‐biphenyl or 2,7‐diiodo‐9,9‐dioctylfluorene via the Sonogashira reaction, and their photoluminescence (PL) and electroluminescence (EL) properties were studied. The new poly(arylene ethynylenes) were poly[(3,3′‐dimethyl‐1,1′‐biphenyl‐4,4′‐diyl)‐1,2‐ethynediyl‐(2,5‐dioctyl‐1,4‐phenylene)‐1,2‐ethynediyl] (PPEBE) and poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐1,2‐ethynediyl‐(2,5‐dioctyl‐1,4‐phenylene)‐1,2‐ethynediyl] (PPEFE), both of which were blue‐light emitters. PPEBE not only emitted better blue light than PPEFE, but it also performed better in EL than the latter when the light‐emitting diode devices were constructed with the configuration indium–tin oxide/poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid) (50 nm)/polymer (80 nm)/Ca:Al. The device constructed with PPEBE exhibited an external quantum efficiency of 0.29 cd/A and a maximum brightness of about 560 cd/m2, with its EL spectrum showing emitting light maxima at λ = 445 and 472 nm. The device with PPEFE exhibited an efficiency of 0.10 cd/A and a maximum brightness of about 270 cd/m2, with its EL spectrum showing an emitting light maximum at λ = 473 nm. Hole mobility (μh) and electron mobility (μe) of the polymers were determined by the time‐of‐flight method. Both polymers showed faster μh values. PPEBE revealed a μh of 2.0 × 10?4 cm2/V·s at an electric field of 1.9 × 105 V/cm and a μe of 7.0 × 10?5 cm2/V·s at an electric field of 1.9 × 105 V/cm. In contrast, the mobilities of the both carriers were slower for PPEFE, and its μh (8.0 × 10?6 cm2/V·s at an electric field of 1.7 × 106 V/cm) was 120 times its μe (6.5 × 10?8 cm2/V·s at an electric field of 8.6 × 105 V/cm). The much better balance in the carriers' mobilities appeared to be the major reason for the better device performance of PPEBE than PPEFE. Their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels were also a little different from each other. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 299–306, 2006  相似文献   

16.
Two novel phenyl‐substituted poly(p‐phenylene vinylene) derivatives, poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐1,4‐phenylenevinylene} (EDP‐PPV) and poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐5‐methoxy‐1,4‐phenylenevinylene} (EDMP‐PPV), and their copolymer, poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐1,4‐phenylene‐vinylene‐co‐2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐5‐methoxy‐1,4‐phenylenevinylene} (EDP‐co‐EDMP‐PPV; 4:1, 1:1, and 1:4), were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H‐NMR, 13C‐NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, and photoluminescence and electroluminescence (EL) spectroscopy. The EL polymers possessed excellent solubility in common solvents and good thermal stability with a 5% weight loss temperature of more than 380°C. The weight‐average molecular weights and polydispersity indices of EDP‐PPV, EDMP‐PPV, and EDP‐co‐EDMP‐PPV were 1.40–2.58 × 105, and 1.19–1.52, respectively. Double‐layer light‐emitting diodes with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline)aluminum/Al devices were fabricated, and EDP‐co‐EDMP‐PPV (1:1) showed the highest EL performance and exhibited a maximum luminance of 1050 cd/m2 at 19.5 V. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1259–1266, 2005  相似文献   

17.
A novel π‐conjugated poly[di(p‐phenyleneethynylene)‐alt‐(p‐phenylenecyanovinylene)] having n‐octyloxy side chains (PPE‐C8PPE‐PPV) was prepared by polymerization of the monomer DEDB with BCN. Chemical structure of the polymer obtained was confirmed by 1H NMR, FTIR, and EA. PPE‐C8PPE‐PPV had a molecular weight enough to fabricate the electroluminescent (EL) device, and showed a good organosolubility, excellent thermal stability, and film‐forming property. In UV absorption and PL spectra in film it showed a maximum at 430 and 543 nm, respectively, which appeared 5 and 41 nm longer wavelengths than that of the solution, respectively. HOMO, LUMO energy levels and band gap were determined to be ?5.70, ?3.29, and 2.41 eV, respectively. Two EL devices with low‐work function cathodes were fabricated with the structures of ITO/PEDOT/PPE‐C8PPE‐PPV/cathodes (LiF/Al and Mg:Ag/Ag). The both devices exhibited a bright green light emission at 545 nm and the maximum luminescence of 197 cd/cm2 (LiF/Al) and 158 cd/cm2 (Mg:Ag/Ag). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
A new electroluminescent copolymer [poly(1,5‐di(3,5‐dimethyloxystyrylene)naphthalene‐block‐tri(ethylene oxide)) (DSN–TEO)], containing alternating rigid, conjugated light‐emitting units and flexible tri(ethylene oxide) ionic conductive units, was synthesized via the Wittig reaction. The polymer has fairly good solubility in chloroform, tetrahydrofuran, toluene, etc, and excellent film‐forming ability. The decomposition temperature and the glass transition temperature were 409 °C and 42.2 °C, respectively. A light‐emitting diode (LED) device with configuration ITO/PEDOT–PSS/DSN–TEO/Ca(Al) and light‐emitting electrochemical cell (LEC) device with ITO/DSN–TEO + PEO (LiTf)/Al were prepared, and the photoluminescence and electroluminescence (EL) properties were investigated. Efficient blue‐green light emission (EL maximum emissive wavelength at 508 nm) was found with onset voltage at 6 V. The maximum light efficiency was 0.107 cd A?1 at 20 V for LED, and the onset voltage 2.5 V and the maximum light efficiency was 4.2 cd A?1 at 2.8 V for LEC, respectively. The response time of the LEC was less than 5 s. The EL efficiency of LEC device was improved by 44 as compared with the relative LED device. © 2003 Society of Chemical Industry  相似文献   

19.
An Euler–Euler anisotropic Gaussian approach (EE‐AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster‐induced turbulence (CIT). A three‐dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite‐volume framework. The particle‐phase volume‐fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open‐source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. The results demonstrate that the proposed EE‐AG methodology is able to produce comparable results to EL simulations, and this moment‐based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2630–2643, 2017  相似文献   

20.
New donor–acceptor conjugated copolymers called poly}2,7‐(9,9′‐dihexylfluorene)‐co‐5,10‐[pyrazino(2,3‐g)quinoxaline]{s or PFPQs [where F represents the 2,7‐(9,9′‐dihexylfluorene) moiety and PQ represents the 5,10‐(pyrazino[2,3‐g]quinoxaline) moiety], synthesized by the palladium‐catalyzed Suzuki coupling reaction, are reported. The PQ contents in the PFPQ copolymers were 0.3, 1, 5, and 50 mol %, and the resulting copolymers were named PFPQ0.3, PFPQ01, PFPQ05, and PFPQ50, respectively. Absorption spectra showed a progressive redshift as the PQ acceptor content increased. The relatively small optical band gap of 2.08 eV for PFPQ50 suggested strong intramolecular charge transfer (ICT) between the F and PQ moieties. The photoluminescence emission peaks of the PFPQ copolymer films also exhibited a large redshift with enhanced PQ contents, ranging from 551 nm for PFPQ0.3 to 592 nm for PFPQ50. However, the PFPQ copolymer based electroluminescence (EL) devices showed poor device performances probably due to the strong confinement of the electrons in the PQ moiety or significant ICT. This problem was resolved with a binary blend of poly[2,7‐(9,9‐dihexylfluorene)] (PF) and PFPQ with a volume ratio of 95/5 (BPQ05). Multiple emission peaks were observed at 421, 444, 480, 516, and 567 nm in the BPQ05‐based EL devices because the low PQ content led to incomplete energy transfer. The Commission Internationale de L'Eclairage 1931 coordinates of the BPQ05‐based EL device were (0.31, 0.32), which were very close to the standard white emission of (0.33, 0.33). Furthermore, the maximum luminescence intensity and luminescence yield were 524 cd/m2 and 0.33 cd/A, respectively. This study suggested that a pure white light emission was achieved with the PFPQ copolymers or PF/PFPQ blends through the control of the energy transfer between F and PQ. Such PFPQ copolymers or PF/PFPQ blends would be interesting for electronic and optoelectronic devices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号