共查询到19条相似文献,搜索用时 78 毫秒
1.
王文举 《电脑编程技巧与维护》2014,(5):23-26
介绍了蚁群算法的基本原理、设计思路和在求解旅行商问题中的具体应用,并给出了完整的代码实现,对于读者学习和应用蚁群算法有很好的借鉴作用。 相似文献
2.
旅行商问题的人工免疫算法 总被引:4,自引:0,他引:4
1 引言旅行商问题(TSP)是一个典型的有序组合优化问题,可以看成是许多领域内复杂工程优化问题的抽象形式。研究TSP问题的求解方法对解决复杂工程优化问题具有重要的参考价值。对于TSP问题,目前还没有完全有效的求解方法,但是,多年来人们一直在不停地探索。近年来,模拟自然界生物进化过程的求解TSP问题的方法不断见诸文献,但以基于 相似文献
3.
根据蚁群算法与模拟退火算法的特性,提出了求解旅行商问题的混合算法.由模拟退火算法生成信息素分布,然后由蚁群算法根据累计更新的信息素找出若干组解,再经过模拟退火算法在邻域内找另外一个解的操作,得到更有效的解.与模拟退火算法、标准遗传算法、蚁群算法和随机初始化的蚁群算法进行比较,4种混合算法效果都比较好,策略D的混合算法效果最好. 相似文献
4.
旅行商是应用广泛的优化组合问题,采用蚁群和遗传混合算法解决旅行商问题,利用遗传算法的交叉、变异机制解决蚁群算法易出现局部最优解的问题,将混合算法在VBA环境调试运行。混合算法与蚁群算法、遗传算法仿真数据比较,混合算法具有较好改进效果。 相似文献
5.
针对蚁群算法搜索时间长、易陷于局部最优解的缺点,提出一种自适应的调整信息素挥发因子的改进策略。通过解决旅行商问题,证明该改进算法具有优良的寻优能力,提高了算法的全局性。 相似文献
6.
求解旅行商问题的混合量子蚁群算法 总被引:1,自引:0,他引:1
针对蚁群算法求解旅行商问题时易陷入局部最优和收敛速度慢的问题,提出一种新的求解旅行商问题的混合量子蚁群算法。该算法采用量子比特的概率幅对各路径上的信息素进行编码,采用量子旋转门及蚂蚁走过的路径对信息素进行更新,设计一种新的变换邻域准则。基于TSPLIB的仿真实验结果表明了该算法具有较快的收敛速度和求解精度。 相似文献
7.
蚁群优化是一种元启发式的随机搜索技术,是目前解决组合优化问题最有效的工具之一。旅行商问题(TSP)是一个典型的组合优化问题,易于描述却难于求解。在介绍了求解旅行商问题的三种经典的蚁群算法的基本原理后,着重分析了蚁群算法的发展现状,总结出蚁群算法发展的五个方向,即基于局部优化算法的蚁群算法、对路径上的信息素更新方法进行改进、蚁群算法与其他算法的融合、对蚁群算法的控制参数进行优化和并行蚁群算法。而且这五个方向有相互融合的趋势。 相似文献
8.
旅行商问题作为组合优化研究中最具挑战的问题之一, 自被提出以来就引起了学术界的广泛关注并提出了大量的方法来解决它. 蚁群算法是求解复杂组合优化问题的一种启发式仿生进化算法, 是求解旅行商问题的有效手段. 本文分别介绍蚁群算法中几个有代表性的算法, 综述了蚁群算法的改进、融合和应用的文献研究进展, 以评价近年来不同版本的蚁群算法为解决旅行商问题的发展和研究成果, 并针对改进蚁群算法结构框架、算法参数的设置及优化、信息素优化和混合算法等方面, 对现被提出的改进算法进行了分类综述. 对蚁群算法在未来对旅行商问题及其他不同领域的研究内容和研究热点的进一步发展提供了展望和依据. 相似文献
9.
10.
针对基本蚁群算法在求解旅行商问题时表现的停滞和早熟现象,提出一种带遗忘因子的蚁群优化算法。通过在人工蚂蚁中加入遗忘因子,建立新的状态转移公式,修改信息素更新策略,蚂蚁按照基本蚁群算法的搜索方式工作,结合当前解的最优值误差率,对状态转移方程进行调整,新公式可用于降低最优值误差、提高最优值跟踪能力、修正路径评价模型、计算每条路径到当前最优解的概率。对TSP实例的仿真结果表明,改进算法耗时更短,路径寻优结果更优。 相似文献
11.
12.
基于改进萤火虫算法求解旅行商问题 总被引:2,自引:0,他引:2
鉴于TSP问题是古老的组合优化难题,而萤火虫算法在求解函数优化问题中表现出优良的性能,因此,本文利用改进的萤火虫算法求解TSP问题.首先,在分析了旅行商问题的特点后,采用整数编码的方式来表示萤火虫的位置.然后,在标准萤火虫算法的位置更新过程中引入了对数递减的惯性权重来影响萤火虫的迭代过程,同时结合了遗传算法中的选择,交叉,变异以及进化逆转操作来提高每一次迭代中种群的多样性及种群的搜索能力,并将改进的算法解决TSP问题.最后,通过Matlab仿真实验表明改进的算法在求解TSP问题时具有更好收敛速度和优化效果. 相似文献
13.
已有求解子旅行商问题的蚁群算法存在容易早熟、易于陷入局部最优的问题。为此,提出一种改进的蚁群算法。将拥挤因子嵌入到蚁群算法的状态转移和信息素更新过程中,增强全局搜索能力,设计邻域搜索技术和局部变异技术,以提高解的质量和加快收敛速度。实验结果表明,该算法的求解质量和稳定性较好。 相似文献
14.
构建“基因库”求解TSP问题的混合遗传算法 总被引:4,自引:0,他引:4
该文设计了求解平面TSP的一种新算法,该算法首先构建一个“基因库”,在单亲演化中使用“基因库”中的基因,并将单亲演化所产生的最好解,作为群体演化中的一个个体,再进行群体演化。在求解TSPChina144问题实验中,不仅找到迄今最好的解,而且该算法具有高效的特点。 相似文献
15.
16.
蚁群算法存在对参数的依赖、早熟和停滞等缺点但具有与其他算法容易结合的特点,据此,将差分演化算法应用到蚁群算法的参数选取中,提出一种改进的蚁群算法。将蚁群算法的参数作为差分演化算法解空间的向量元素,在自适应地寻找蚁群算法最优参数组合的同时求解问题的最优解。改进算法对蚁群算法中的参数进行自适应调整,可避免大量盲目的测试,扩大蚁群算法的搜索空间,提高全局搜索能力。在典型的旅行商问题上进行对比实验,结果验证了改进算法的优化性能高于传统的蚁群算法。 相似文献
17.
18.
19.
提出基于离散型贝壳漫步优化算法(DMWO)的旅行商问题(TSP)求解算法.在DMWO的计算框架下构造TSP相应的评估函数及个体差异度量算子.针对离散型算法整体调整容易破坏已形成的较优路径问题,采用简单的2-opt算子进行局部调整,增强算法在求解TSP时的局部搜索能力.实验中采用多组不同规模的标准TSPLIB数据,对比同样采用2-opt算子的萤火虫优化算法和蚁群优化算法,DMWO在稳定性、解的准确性及所需的迭代次数等方面具有更好的性能. 相似文献