首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical behavior of extruded AZ31E and AZ91E alloys was investigated in Hank's solution at 37 °C. The behavior of the two alloys was studied with immersion time using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and weight loss tests. It was found that the corrosion resistance of AZ31E alloy is higher than that of AZ91E. Also, the effect of adding different concentrations of a commercial drug called glucosamine sulphate (as inhibitor) to Hank's solution was studied for AZ31E alloy. The corrosion was effectively inhibited by the addition of 0.01 mM glucosamine sulphate that reacts with AZ31E alloy and forms a protective film on its surface. The results were confirmed by surface examination via scanning electron microscope.  相似文献   

2.
Protective composite coatings were prepared on magnesium alloy AZ91D by micro-arc oxidation (MAO) treatment plus a top coating with sealing agent using multi-immersion technique under low-pressure conditions. The corrosion resistance of AZ91D alloy with composite coatings was superior evidently to that with merely MAO film. SEM observations revealed that the sealing agent was integrated with MAO film by physically interlocking; therewith covered uniformly the surface as well as penetrated into pores and micro-cracks of MAO film. The anti-corrosion properties in 3.5% NaCl solution of the composite coatings were evaluated by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. Based on the results of chronopotentiometric (E ∼ t) and EIS measurements for long time immersion in 3.5% NaCl solution, appropriate equivalent circuits for the composite coatings system were proposed. It follows that due to the blocking effect of the sealing agent in pores and cracks in MAO film, the composite coatings can suppress the corrosion process by holding back the transfer or diffusion of electrolyte and corrosion products between the composite coatings and solution during immersion.  相似文献   

3.
The corrosion behavior of NiTi alloy in fetal bovine serum (FBS) at 37 °C is investigated using open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma mass spectrometry (ICP-MS). The presence of FBS moves the OCP to the negative direction and makes the oxide film thinner and more porous than that in phosphate buffer saline (PBS, pH = 7.4). The impedance of the oxide film formed in FBS is smaller than that in PBS, but the total interface impedance is bigger in FBS because of the formation of a surface bio-film. Pits form on the NiTi alloy after immersion in FBS for 200 h but they are not observed on the sample immersed in PBS. XPS shows that the composition of the oxide film formed in FBS is similar to that formed in PBS and it is composed of mainly Ti oxides with a small amount of Ti hydroxide. Hydrated Ti is observed on the outermost surface of the NiTi alloy. The thickness of the oxide film on the NiTi alloy immersed in PBS is 17 ± 3.0 nm and that on the sample immersed in FBS is 10 ± 3.2 nm. The results are consistent with those obtained by EIS. The presence of FBS can accelerate leaching of Ni ions and the mechanism is investigated and discussed.  相似文献   

4.
The corrosion resistance characteristics of three coatings on magnesium alloy AZ31—conventional paint with phosphate film, cathodic electrodeposition coating (E-coating), and E-coating pretreated with silane (Mg/silane/E-coating)—have been studied by means of electrochemical impedance spectroscopy (EIS) in a 3.5 wt% NaCl neutral aqueous solution and salt spray test using ASTM B117. Silane film was obtained by dipping AZ31 specimens in diluted hydroalcoholic silanic solutions and successively curing. It was found that the corrosion resistance of the Mg alloy with E-coating was superior to conventional paint and could be further enhanced with silane pretreatment as an interfacial film. The results of water volume fraction (Φsaturation) and diffusion coefficient (D) also indicated that the Mg/silane/E-coating possessed excellent compactness and corrosion resistance. A model of the corrosion mechanism for Mg/silane/E-coating has been presented through EIS analysis.  相似文献   

5.
This work investigates the protective behaviour of bis-[triethoxysilylpropyl] tetrasulfide silane pre-treatments on the AZ31 Mg alloy. The silane solution was modified by the addition of cerium nitrate or lanthanum nitrate in order to introduce corrosion inhibition properties in the silane film.The corrosion behaviour of the pre-treated AZ31 magnesium alloy was studied during immersion in 0.005 M NaCl solution, using electrochemical impedance spectroscopy and the scanning vibrating electrode technique (SVET). The electrochemical experiments showed that the presence of cerium ions or lanthanum ions improve the protective behaviour of the silane film. The SVET experiments evidenced that the presence cerium in the silane film led to an important reduction of the corrosion activity.The results demonstrate that either cerium ions or lanthanum ions can be used as additives to the silane solutions to improve the performance of the pre-treatments for the AZ31 magnesium alloy.  相似文献   

6.
The influence of the microstructure and aluminium content of commercial AZ31, AZ80 and AZ91D magnesium alloys was evaluated in terms of their corrosion behaviour in an aerated 3.5 wt.% NaCl solution at 25 °C. The corrosion process was monitored by electrochemical impedance spectroscopy (EIS). The surface was characterized by scanning electron microscopy (SEM), scanning Kelvin probe force microscopy (SKPFM) and low-angle X-ray diffraction (XRD). The extent of corrosion damage was strongly dependent on the aluminium content and alloy microstructure. Two key factors were observed for the lowest corrosion rates, which occurred for the AZ80 and AZ91D two-phase alloys: the aluminium enrichment on the corroded surface for the AZ80 alloy, and the β-phase (Mg17Al12), which acted as a barrier for the corrosion progress for the AZ80 and AZ91D alloys. Surface potential maps suggested that, between the β-phase and the α-matrix, the galvanic coupling was not significant.  相似文献   

7.
The electrochemical behavior of AZ91D and Ti–6Al–4V alloys was investigated in simulated body fluid (SBF) at 37 °C. The aim of the present study was to evaluate their corrosion performance through the analysis of corrosion resistance variation with time, using electrochemical impedance spectroscopy (EIS) tests and corrosion current density using potentiodynamic polarization measurements. Very low current density was obtained for Ti–6Al–4V alloy compared to that of AZ91D alloy, indicating a typical passive behavior for Ti alloy. EIS results exhibited high corrosion resistance indicating a highly stable film on titanium alloy compared to magnesium alloy in SBF.  相似文献   

8.
A double-layer coating was prepared on AZ91D alloy by plasma electrolytic oxidation (PEO) plus electroless plating (EP). The plasma eletrolytic oxidation film was prepared in a silicate bath as an inner layer of the coating. Electroless plated Ni-P layer grew from the pores of the PEO film in a nickelous acetate bath and formed as the outer layer of the coating. The microstructure and crystallographic structure was observed with FESEM and XRD. The corrosion resistance of the double-layer coating was evaluated by means of chronopotentiometric (E-t), potentiodynamic polarization (E-i), neutral salt spray test and electrochemical impedance spectroscopy (EIS) test. Compared with the data of as-cast AZ91D magnesium, the open circuit potential of the double-layer coated AZ91D alloy increased by 1.1815 V, while the self-corrosion current density decreased by two orders of magnitude. E-i, EIS result showed that the corrosion resistance of magnesium alloy AZ91D was improved by the double-layer coating. The salt spray test and polarization test results show that the pitting corrosion resistance of AZ91D alloy was improved greatly. An equivalent circuit was proposed to fit the impedance diagrams of AZ91D alloy with the coating.  相似文献   

9.
Epoxy coatings containing polyaniline (PANI) and polyaniline/organophilic montmorillonite (PANI/OMMT) powders were prepared on the surface of AZ91D magnesium alloy. The corrosion performance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) and open-circuit potential analysis in 3.5% NaCl. The results indicate that the PANI/OMMT coating retained its high corrosion protection for AZ91D magnesium alloy after 6000 h of immersion. The protective mechanism conferred by the PANI/OMMT coating was also discussed. The effects of oxygen on the protective mechanism of PANI were evaluated by EIS measurements in a 3.5% deaerated NaCl solution.  相似文献   

10.
The electrochemical degradation of a silicate- and a phosphate-based plasma electrolytic oxidation (PEO) coated AM50 magnesium alloy obtained using a pulsed DC power supply was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in NaCl solutions of different chloride ion concentrations viz., 0.01 M, 0.1 M, 0.5 M and 1 M. The surface of the PEO coated specimens after 50 h of immersion/EIS testing was examined by optical microscopy and scanning electron microscopy. The results showed that the corrosion deterioration of PEO coated magnesium alloy in NaCl solutions was significantly influenced by chloride ion concentration. The silicate-based coating was found to offer a superior corrosion resistance to the magnesium substrate than the phosphate-based coatings in lower chloride ion concentration NaCl solutions (0.01 M and 0.1 M NaCl). On the other hand both these PEO coatings were found to be highly susceptible to localized damage, and could not provide an effective corrosion protection to Mg alloy substrate in solutions containing higher chloride concentrations (0.5 M and 1 M). The extent of localized damage was observed to be more with increase in chloride concentration in both the cases.  相似文献   

11.
The corrosion protection behaviour of organic–inorganic hybrid thin films on AZ31 and AZ61 magnesium alloy substrates has been studied. These films were prepared by a sol–gel dip-coating method. The organopolysiloxane precursors were γ-methacryloxypropyltrimethoxysilane (MAPTMS) and tetramethoxysilane (TMOS). An attempt was made to determine the possible relationships between the degradation of the sol–gel film and composition of the metal substrate during the exposure of the metal/coating system to 0.6 M NaCl aqueous solutions. For this purpose electrochemical impedance spectroscopy (EIS) and hydrogen evolution measurements were applied. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the sol–gel films formed on the surface of AZ61 alloy were far more perfect and uniform than those formed on the AZ31 alloy. This behaviour was attributed to the effect of the native oxide film initially present on the surface of the AZ61 alloy, which inhibited the attack of magnesium. Results indicated that the sol–gel coated AZ61 substrate tended to develop corrosion products slower than the sol–gel coated AZ31 substrate, trend that could change by prolonging exposure time. After 6 days of immersion, a clear inhibitive effect of the corrosion products formed during the test was observed in the case of the sol–gel coated AZ31, but not with the coated AZ61 alloy substrate, a phenomenon explained by the carbonate enrichment observed by XPS.  相似文献   

12.
Magnesium alloy, although valuable, is reactive and requires protection before it can be applied in many fields. In this study, a novel protective environmental-friendly gradient coating was performed on AZ91D magnesium alloy by non-chromate surface treatments, which consisted of phytic acid chemical conversion coating and the sol-gel-based CeO2 thin film. The surface morphologies, microstructure and composition of the coatings were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The effects of the concentration, layers, temperature of heat treatment of CeO2 sol on the anti-corrosion properties of the gradient coating for magnesium were also investigated. The results showed that the gradient coating was mainly composed of crystalline CeO2. According to the results of electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environmental-friendly surface treatment.  相似文献   

13.
Anodic coatings formed on magnesium alloys by plasma anodization process are mainly used as protective coatings against corrosion. The effects of KOH concentration, anodization time and current density on properties of anodic layers formed on AZ91D magnesium alloy were investigated to obtain coatings with improved corrosion behaviour. The coatings were characterized by scanning electron microscopy (SEM), electron dispersion X-ray spectroscopy (EDX), X-ray diffraction (XRD) and micro-Raman spectroscopy. The film is porous and cracked, mainly composed of magnesium oxide (MgO), but contains all the elements present in the electrolyte and alloy. The corrosion behaviour of anodized Mg alloy was examined by using stationary and dynamic electrochemical techniques in corrosive water. The best corrosion resistance measured by electrochemical methods is obtained in the more concentrated electrolyte 3 M KOH + 0.5 M KF + 0.25 M Na3PO4·12 H2O, with a long anodization time and a low current density. A double electrochemical effects of the anodized layer on the magnesium corrosion is observed: a large inhibition of the cathodic process and a stabilization of a large passivation plateau.  相似文献   

14.
The corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution at the corrosion potential (Ecorr) was investigated using electrochemical impedance spectroscopy (EIS), environmental scanning electron microscopy (ESEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results showed that when the immersion time was less than 18th, general corrosion occurred on the surface and the main corrosion products were hydroxides and sulfates. The film coverage effect was the main mechanism for the corrosion process of AZ91 alloy. At this stage, the matrix had a better corrosion resistance. With the increasing immersion time, pitting occurred on the surface. At this stage, the corrosion process was controlled by three surface state variables: the area fraction θ1 of the region controlled by the formation of Mg(OH)2, the area fraction θ2 of the region controlled by the precipitation of MgAl2(SO4)4·2H2O, and the metastable Mg+ concentration Cm.  相似文献   

15.
Utilizing electrochemical impedance spectroscopy (EIS), we characterize the passive film properties of alloy 22 during immersion in low pH nitrate and chloride solutions. In pure HCl, the passive film grows thinner with increasing acid concentration. In contrast, in HNO3, the passive film corrosion protection properties are enhanced, which leads to low corrosion rates, even at pH < −0.5. The combined influence of both HCl and HNO3 in contact simultaneously with the alloy 22 surface shows multiple phases in the passive film properties depending on the pH. EIS results show that the passive film changes either thickness and/or composition as the system is driven chemically through different corrosion states, including: active, passive, active/passive and transpassive.  相似文献   

16.
Eco-friendly vanadia based chemical conversion coating was applied for improving the corrosion resistance of a newly developed magnesium AZ31 HP-O alloy. The effect of vanadia solution concentrations (10, 30 and 50 g/l) and pH (neutral pH 7 and pH 9) on the corrosion protection performance of a magnesium substrate were investigated. EIS and linear polarization techniques were used to evaluate the electrochemical behavior in 3.5% NaCl. The results showed a marked increase in the localized corrosion resistance after applying vanadia surface treatment of 50 g/l due to self-healing effect. The optimum conditions to obtain protective coatings for AZ31 HP-O with a self-healing ability were determined. Changes in surface morphology, composition and microstructure of the conversion coatings were followed by SEM-EDS and macroscopic imaging techniques.  相似文献   

17.
This work aims to develop and study new anticorrosion films for AZ31B magnesium alloy based on the sol-gel coating approach.Hybrid organic-inorganic sols were synthesized by copolymerization of epoxy-siloxane and titanium or zirconium alkoxides. Tris(trimethylsilyl) phosphate was also used as additive to confer additional corrosion protection to magnesium-based alloy. A sol-gel coating, about 5-μm thick, shows good adhesion to the metal substrate and prevents corrosion attack in 0.005 M NaCl solution for 2 weeks. The sol-gel coating system doped with tris(trimethylsilyl)-phosphate revealed improved corrosion protection of the magnesium alloy due to formation of hydrolytically stable Mg-O-P chemical bonds.The structure and the thickness of the sol-gel film were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The corrosion behaviour of AZ31B substrates pre-treated with the sol-gel derived hybrid coatings was tested by electrochemical impedance spectroscopy (EIS). The chemical composition of the silylphosphate-containing sol-gel film at different depths was investigated by X-ray photoelectron spectroscopy (XPS) with depth profiling.  相似文献   

18.
Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol   总被引:1,自引:0,他引:1  
The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol–water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride <0.05 M containing 30% ethylene glycol solution, they are more corrosive than the blank (30% ethylene glycol–70% water). However, at concentrations <0.05 for chloride or >0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.  相似文献   

19.
Corrosion behavior of cast, homogenized (T4) and microcystallized (mc) AZ91D alloy was investigated in NaCl aqueous solution by gas collection and electrochemical measurement. The capacitance property of the product films formed on mc alloy and cast alloy was studied by Mott-Schottky approach. The results implied that the grain size have a significant influence on the corrosion resistance of AZ91D alloy as well as β phase. The product films behaved as P-type semiconductor with the increasing of anodic potential. TEM observation indicated that the particle size of the product film on the mc alloy (<10 nm) was far smaller than that on the cast alloy (200 nm), which might be beneficial to the widening of energy band and the decreasing of acceptor concentration in the product film on mc alloy.  相似文献   

20.
A hydrotalcite/hydromagnesite conversion coating with hierarchical structure has been fabricated on a Mg alloy substrate by in situ hydrothermal crystallization method. A MgO layer existing between the hydrotalcite/hydromagnesite film and the substrate was formed prior to the hydrotalcite/hydromagnesite film during the crystallization process. After surface treatment with silane coupling agent, the surface of conversion coating changes from hydrophilic to hydrophobic. Scanning electron microscopy (SEM) revealed that the silylated conversion coating with hierarchical structure maintains the original rough surface of which was composed of numerous micro-scale flakes and beautiful flower-like protrusions. Polarization measurements have shown that the hydrophobic conversion coating exhibited a low corrosion current density value of 0.432 μA/cm2, which means that the hydrophobic conversion coating can effectively protect Mg alloy from corrosion. Electrochemical impedance spectroscopy (EIS) showed that the impedance of the hydrophobic conversion coating was 9000 Ω. It means that the coating served as a passive layer with high charge transfer resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号