首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure, nano-sized LiFePO4 and LiFePO4/C cathode materials are synthesized by spray-drying and post-annealing method. The influence of the sintering temperature and carbon coating on the structure, particle size, morphology and electrochemical performance of LiFePO4 cathode material is investigated. The optimum processing conditions are found to be thermal treatment for 10 h at 600 °C. Compared with LiFePO4, LiFePO4/C particles are smaller in size due to the inhibition of crystal growth to a great extent by the presence of carbon in the reaction mixture. And that the LiFePO4/C composite coated with 3.81 wt.% carbon exhibits the best electrode properties with discharge capacities of 139.4, 137.2, 133.5 and 127.3 mAh g−1 at C/5, 1C, 5C and 10C rates, respectively. In addition, it shows excellent cycle stability at different current densities. Even after 50 cycles at the high current density of 10C, a discharge capacity of 117.7 mAh g−1 is obtained (92.4% of its initial value) with only a low capacity fading of 0.15% per cycle.  相似文献   

2.
The electroactive LiFePO4/C nano-composite has been synthesized by an emulsion drying method. During burning-out the oily emulsion precipitates in an air-limited atmosphere at 300 °C, amorphous or low crystalline carbon was generated along with releasing carbon oxide gases, and trivalent iron as a cheap starting material was immediately reduced to the divalent one at this stage as confirmed by X-ray photoelectron spectroscopy, leading to a low crystalline LiFePO4/C composite. Heat-treatment of the low crystalline LiFePO4/C in an Ar atmosphere resulted in a well-ordered olivine structure, as refined by Rietveld refinement of the X-ray diffraction pattern. From secondary electron microscopic and scanning transmission electron microscopic observations with the corresponding elemental mapping images of iron and phosphorous, it was found that the LiFePO4 powders are modified by fine carbon. The in situ formation of the nano-sized carbon during crystallization of LiFePO4 brought about two advantages: (i) an optimized particle size of LiFePO4, and (ii) a uniform distribution of fine carbon in the product. These effects of the fine carbon on LiFePO4/C composite led to high capacity retention upon cycling at 25 and 50 °C and high rate capability, resulting from a great enhancement of electric conductivity as high as 10−4 S cm−1. That is, the obtained capacity was higher than 90 mAh (g-phosphate)−1 by applying a higher current density of about 1000 mA g−1 (11 C) at 50 °C.  相似文献   

3.
Ke Wang 《Electrochimica acta》2009,54(10):2861-2907
LiFePO4/C composite was synthesized by mechanical activation using sucrose as carbon source. High-energy ball milling facilitated phase formation during thermal treatment. TG-DSC and TPR experiments demonstrated sucrose was converted to CHx intermediate before completely decomposed to carbon. Ball milling time, calcination temperature and dwelling time all had significant impact on the discharge capacity and rate performance of the resulted power. The optimal process parameters are high-energy ball milling for 2-4 h followed by thermal treatment at 700 °C for 20 h. The product showed a capacity of 174 mAh/g at 0.1C rate and around 117 mAh/g at 20C rate with the capacity fade less than 10% after 50 cycles. Too low calcination temperature or insufficient calcination time, however, could result in the residual of CHx in the electrode and led to a decrease of electrode performance.  相似文献   

4.
LiFePO4/(Ag + C) composite cathodes with a new type of nano-sized carbon webs were synthesized by two methods of an aqueous co-precipitation and a sol-gel process, respectively. Simultaneous thermogravimetric-differential thermal analysis indicates that the crystallization temperature of LiFePO4 is about 455-466 °C, which is close to the pyrolysis temperature of polypropylene, 460 °C. The silver and carbon co-modifying does not affect the olivine structure of LiFePO4 but improves its kinetics in terms of discharge capacity and rate capability. Discharge capacities were improved from 153.4 mA h g− 1 of LiFePO4/C to 160.5 mA h g− 1and 162.1 mA h g− 1 for LiFePO4/(Ag + C) cathodes synthesized by the co-precipitation and sol-gel methods, respectively. The possible reasons for the small difference in discharge capacity of two LiFePO4/(Ag + C) cathodes were discussed. AC impedance measurements show that the Ag + C co-modification decreases the charge transfer resistance of LiFePO4/(Ag + C) cathodes.  相似文献   

5.
To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m−3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g−1, respectively, with a volume capacity of 300.6 mAh cm−3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g−1 and a volume capacity of 176.94 mAh cm−3.  相似文献   

6.
LiFePO4/C composite cathode materials with carbon nano-interconnect structures were synthesized by one-step solid state reaction using low-cost asphalt as both carbon source and reducing agent. Based on the thermogravimetry, differential scanning calorimetry, transmission electron microscopy and high-resolution transmission electron microscopy, a growth model was proposed to illustrate the formation of the carbon nano-interconnect between the LiFePO4 grains. The LiFePO4/C composite shows enhanced discharge capacity (150 mAh g−1) with excellent capacity retention compared with the bare LiFePO4 (41 mAh g−1) due to the electronically conductive nanoscale networking provided by the asphalt-based carbon. The results prove that the asphalt is a perfect carbon source and reduction agent for cost-effective production of high performance LiFePO4/C composite.  相似文献   

7.
The carbon nanospheres-LiFePO4 (CNSs-LiFePO4) composite has been synthesized by PEG (polyethylene glycol, mean molecular weight of 30,000) based sol-gel route. Highly conductive CNSs (30-40 nm) were adopted to improve the electronic conductivity of LiFePO4. PEG was used to promote the dispersion of CNSs with the surface functionalization of CNSs, which could facilitate the coating of CNSs on the surface of the LiFePO4 particles. The sample was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and Raman scattering. Electrochemical performance of the CNSs-LiFePO4 composite was characterized by the charge-discharge test and electrochemical impedance spectra measurement. The results indicated that LiFePO4 particles were well coated with the conductive CNSs to overcome the intrinsic low electronic conductivity problem of LiFePO4. The CNSs-LiFePO4 composite delivered an enhanced rate capability (146, 128 and 113 mAh g−1 at 0.1 C, 1 C and 5 C rate). The PEG based sol-gel route enables LiFePO4 networked with CNSs, which offered a higher electrochemical performance.  相似文献   

8.
We have incorporated polymer additives such as poly(ethylene glycol) dimethyl ether (PEGDME) and tetra(ethylene glycol) dimethyl ether (TEGDME) into N-methyl-N-butylpyrrolidinium bis(trifluoromethane sulfonyl)imide (PYR14TFSI)-LiTFSI mixtures. The resulting PYR14TFSI + LiTFSI + polymer additive ternary electrolyte exhibited relatively high ionic conductivity as well as remarkably low viscosity over a wide temperature range compared to the PYR14TFSI + LiTFSI binary electrolytes. The charge/discharge cyclability of Li/LiFePO4 cells containing the ternary electrolytes was investigated. We found that Li/PYR14TFSI + LiTFSI + PEGDME (or TEGDME)/LiFePO4 cells containing the two different polymer additives showed very similar discharge capacity behavior, with very stable cyclability at room temperature (RT). Li/PYR14TFSI + LiTFSI + TEGDME/LiFePO4 cells can deliver about 127 mAh/g of LiFePO4 (74.7% of theoretical capacity) at 0.054 mA/cm2 (0.2C rate) at RT and about 108 mAh/g of LiFePO4 (63.4% of theoretical capacity) at 0.023 mA/cm2 (0.1C rate) at −1 °C for the first discharge. The cell exhibited a capacity fading rate of approximately 0.09-0.15% per cycle over 50 cycles at RT. Consequently, the PYR14TFSI + LiTFSI + polymer additive ternary mixture is a promising electrolyte for cells using lithium metal electrodes such as the Li/LiFePO4 cell reported here. These cells showed the capability of operating over a significant temperature range (∼0-∼30 °C).  相似文献   

9.
LiFePO4/carbon composite cathode material was prepared using polyvinyl alcohol (PVA) as carbon source by pelleting and subsequent pyrolysis in N2. The samples were characterized by XRD, SEM and TGA. Their electrochemical performance was investigated in terms of charge–discharge cycling behavior. It consists of a single LiFePO4 phase and amorphous carbon. The special micro-morphology via the process is favorable for electrochemical properties. The discharge capacity of the LiFePO4/C composite was 145 mAh/g, closer to the theoretical specific capacity of 170 mAh/g at 0.1 C low current density. At 3 C modest current density, the specific capacity was about 80 mAh/g, which can satisfy for transportation applications if having a more planar discharge flat.  相似文献   

10.
Carbon-coated LiFePO4 composites were synthesized by a new method of high-temperature high-energy ball milling (HTHEBM). Fe2O3 and LiH2PO4 were used as raw materials. Glucose, sucrose, citric acid and active carbon were used as reducing agents and carbon sources, respectively. In this method, high-energy ball milling and carbon coating worked together and, therefore, fine and homogeneous LiFePO4/C particles with excellent properties were obtained in a relatively short synthesis time of 9 h. Moreover, the synthesis process could be completely finished at a relatively lower temperature of 600 °C for high-energy ball milling transforming mechanical energy into thermal energy. The results of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical performance tests indicated that carbon source had an important influence on the properties of LiFePO4/C composites synthesized by the HTHEBM method. It was proved that the LiFePO4 composites coated with glucose had the best properties with 1 μm geometric mean diameter and 150.3 mA h g−1 initial discharge capacity at a current rate of 0.1 C. After the 20th cycle test, the reversible capacity was 148 mA h g−1 at 0.1 C, showing a retention ratio to the initial capacity of 98.5%.  相似文献   

11.
The precursors of LiFePO4 were prepared by a sol-gel method using lithium acetate dihydrate, ferrous sulfate, phosphoric acid, citric acid and polyethylene glycol as raw materials, and then the carbon-modified nanocrystalline LiFePO4 (LiFePO4/C) cathode material was synthesized by a one-step microwave method with the domestic microwave oven. The effect of microwave time and carbon content on the performance of the resulting LiFePO4/C material was investigated. Structural characterization by X-ray diffraction and scanning electron microscopy proved that the olivine phase LiFePO4 was synthesized and the grain size of the samples was several hundred nanometers. Under the optimal conditions of microwave time and carbon content, the charge-discharge performance indicated that the nanosized LiFePO4/C had a high electrochemical capacity at 0.2 C (152 mAh g−1) and improved capacity retention; the exchange current density was 1.6977 mA cm−2. Furthermore, the rate capability was improved effectively after LiFePO4 was modified with carbon, with 59 mAh g−1 being obtained at 20 C.  相似文献   

12.
LiFePO4/C was synthesized by the method of solid-liquid reaction milling, using FeCl3·6H2O, Li2CO3 and (NH4)2HPO4 and glucose, which was used as reductant (carbon source). The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), TG-DTA analysis, infrared absorption carbon-sulfur analysis and electrochemical performance test. The sample synthesized at 680 °C for 8 h showed, at initial discharge, a capacity of 155.8, 153.2, 148.5, 132.7 mAh g− 1 at 0.2 °C, 0.5 °C, 1 °C and 3 °C rate respectively. The sample also showed an excellent capacity retention as there was no significant capacity fade after 10 cycles.  相似文献   

13.
Yan Cui 《Electrochimica acta》2010,55(3):922-7735
Carbon coated LiFePO4 particles were first synthesized by sol-gel and freeze-drying method. These particles were then coated with La0.7Sr0.3MnO3 nanolayer by a suspension mixing process. The La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 particles were calcined at 400 °C for 2 h in a reducing atmosphere (5% of hydrogen in nitrogen). Nanolayer structured La0.7Sr0.3MnO3 together with the amorphous carbon layer forms an integrate network arranged on the bare surface of LiFePO4 as corroborated by high-resolution transmission electron microscopy. X-ray diffraction results proved that the co-coated composite still retained the structure of the LiFePO4 substrate. The twin coatings can remarkably improve the electrochemical performance at high charge/discharge rates. This improvement may be attributed to the lower charge transfer resistance and higher electronic conductivity resulted from the twin nanolayer coatings compared with the carbon coated LiFePO4.  相似文献   

14.
A water quenching (WQ) method was developed to synthesize LiFePO4 and C-LiFePO4. Our results indicate that this synthesis method ensures improved electrochemical activity and small crystal grain size. The synthetic conditions were optimized using orthogonal experiments. The LiFePO4 sample prepared at the optimized condition showed a maximum discharge capacity of 149.8 mAh g−1 at a C/10 rate. C-LiFePO4 with a low carbon content of 0.93% and a high discharge specific capacity of 163.8 mAh g−1 has also been obtained using this method. Water quenching treatment shows outstanding improvement of the electrochemical performance of LiFePO4.  相似文献   

15.
To improve the cathodic performance of olivine-type LiMnPO4, we investigated the optimal annealing conditions for a composite of carbon with cation doping. Nanocrystalline and the cation-doped LiMn1−xMxPO4 (M = Ti, Mg, Zr and x = 0, 0.01, 0.05 and 0.10) was synthesized in aqueous solution using a planetary ball mill. The synthesis was performed at the fairly low temperature of 350 °C to limit particle size. The obtained samples except for the Zr doped one consisted of uniform and nano-sized particles. The performance of LiMnPO4 was much improved by an annealing treatment between 500 and 550 °C with carbon in an inert atmosphere. A small amount of metal-rich phosphide (Mn2P) was detected in the sample annealed at 900 °C. In addition, 1 at.% Mg doping for Fe enhanced the rate capability in our doped samples. The discharge capacity of LiMn0.99Mg0.01PO4/C was 146 mAh/g at 0.1 mA/cm2 and 125 mAh/g even at 2.0 mA/cm2.  相似文献   

16.
Amorphous hydrated iron (III) phosphate has been synthesized by a coordinate precipitation method from equimolecular Fe(NO3)3 and (NH4)2HPO4 solutions at an elevated temperature. Hydrated iron (III) phosphate samples and the corresponding LiFePO4/C products were characterized by XRD and SEM. The electrochemical behavior was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The LiFePO4/C fabricated from as-synthesized FePO4 delivered discharge capacities of 162.5, 147.3, 133.0, 114.7, 97.2, 91.3 and 88.5 mAh g−1 at rates of 0.1C, 0.2C, 0.5C, 1C, 2C, 3C and 4C with satisfactory capacity retention, respectively.  相似文献   

17.
Effects of ball milling way and time on the phase formation, particulate morphology, carbon content, and consequent electrode performance of LiFePO4/C composite, prepared by high-energy ball milling of Li2CO3, NH4H2PO4, FeC2O4 raw materials with citric acid as organic carbon source followed by thermal treatment, were investigated. Three ball milling ways and five different milling durations varied from 0 to 8 h were compared. LiFePO4/C composites could be obtained from all synthesis processes. TEM examinations demonstrated LiFePO4/C from ball milling in acetone resulted in sphere shape grains with a size of ∼60 nm, similar size was observed for LiFePO4/C from dry ball milling but in a more irregular shape. The ball milling in benzene resulted in a much larger size of ∼250 nm. The LiFePO4/C composites prepared from dry ball milling and ball milling in acetone showed much better electrochemical performance than that from ball milling in benzene. SEM examinations and BET measurements demonstrated that the high-energy ball milling effectively reduced the grain size. A ball milling for 4 h resulted in the best electrochemical performance, likely due to the proper amount of carbon and proper carbon structure were created.  相似文献   

18.
Carbon-dispersed LiFePO4 materials were routinely prepared by heating metal-salt-containing pastes of organogels to temperatures at 300 and 700 °C to benefit the intrinsic conductivity, and we ultimately discerned the optimized carbon content, 4.55 wt%. Carbon doping will decrease tap density of prepared cathode material and then bring about electrode preparing difficulty, so we tried different kinds of organogels to make out the densest carbon composite. They were polyacrylamide (PAM), sugar and phenolic resin. The most excellent pyrolyzed PAM paste was found increasingly electrochemical reversible, exhibiting 113.2 mAh/g at C/6 and 95 mAh/g at C/3. And we found a good cycliability of 95 mAh/g at 0.2 mA cm−2 at room temperature. Seen from atomic force microscopy, this composite was far more different from other pyrolyzed pastes in morphology, which contained judicious designed hiberarchy and highly dispersed nanoparticles. Decreased 2θ in XRD spectra also showed the varied cell parameters, though no exact figures of the varied cell parameters could be given due to a potential existence of an unknown second phase with electrochemical activity.  相似文献   

19.
Monoclinic lithium vanadium phosphate, Li3V2(PO4)3, has been successfully synthesized using LiF as lithium source. The one-step reaction with stoichiometric composition and relative lower sintering temperature (700 °C) has been used in our experimental processes. The solid-state reaction mechanism using LiF as lithium precursor has been studied by X-ray diffraction and Fourier transform infrared spectra. The Rietveld refinement results show that in our product sintered at 700 °C no impurity phases of VPO4, Li5V(PO4)2F2, or LiVPO4F can be detected. The solid-state reaction using Li2CO3 as Li-precursor has also been carried out for comparison. X-ray diffraction patterns indicate that impurities as Li3PO4 can be found in the product using Li2CO3 as Li-precursor unless the sintering temperatures are higher than 850 °C. An abrupt particle growth (about 2 μm) has also been observed by scanning electron microscope for the samples sintered at higher temperatures, which can result in a poor cycle performance. The product obtained using LiF as Li-precursor with the uniform flake-like particles and smaller particle size (about 300 nm) exhibits the better performance. At the 50th cycle, the reversible specific capacities for Li3V2(PO4)3 measured between 3 and 4.8 V at 1C rate are found to approach 147.1 mAh/g (93.8% of initial capacity). The specific capacity of 123.6 mAh/g can even be hold between 3 and 4.8 V at 5C rate.  相似文献   

20.
Structural change of Cr-doped LiFePO4/C during cycling is investigated using conventional and synchrotron-based in situ X-ray diffraction techniques. The carbon-coated and Cr-doped LiFePO4 particles are synthesized by a mechanochemical process followed by a one-step heat treatment. The LiFe0.97Cr0.03PO4/C has shown excellent rate performance, delivering the discharge capacity up to 120 mAh/g at 10 C rate. The results suggest that the improvement of the rate performance is attributed to the chromium doping, which facilitates the phase transformation between triphylite and heterosite during cycling, and conductivity improvement by carbon coating. Structural analysis using the synchrotron source also indicates that the doped Cr replaces Fe and/or Li sites in LiFePO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号