首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural nano-structural attapulgite clay was purified by mechanical stirring with the aid of ultrasonic wave and its structure and morphology was investigated by XRD and transmission electron microscopy (TEM). Cytochrome c was immobilized on attapulgite modified glassy carbon electrode. The interaction between Cytochrome c and attapulgite clay was examined by using UV-vis spectroscopy and electrochemical methods. The direct electron transfer of the immobilized Cytochrome c exhibited a pair of redox peaks with formal potential (E0′) of about 17 mV (versus SCE) in 0.1 mol/L, pH 7.0, PBS. The electrode reaction showed a surface-controlled process with the apparent heterogeneous electron transfer rate constant (ks) of 7.05 s−1 and charge-transfer coefficient (α) of 0.49. Cytochrome c immobilized on the attapulgite modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide (H2O2). The calculated apparent Michaelis-Menten constant was 470 μmol/L, indicating a high catalytic activity of Cytochrome c immobilized on attapulgite modified electrode to the reduction of H2O2. Based on these, a third generation of reagentless biosensor can be constructed for the determination of H2O2.  相似文献   

2.
Cytochrome c/DNA modified electrode was achieved by coating calf thymus DNA onto the surface of glassy carbon electrode firstly, then immobilizing cytochrome c on it by multi-cyclic voltammetric method and characterized by the electrochemical impedance. The electrochemical behavior of cytochrome c on DNA modified electrode was explored and showed a quasi-reversible electrochemical redox behavior with a formal potential of 0.045 ± 0.010 V (versus Ag/AgCl) in 0.10 M, pH 5.0, acetate buffer solution. The peak currents were linearly with the scan rate in the range of 20-200 mV/s. Cytochrome c/DNA modified electrode exhibited elegant catalytic activity for the electrochemical reduction of NO. The catalytic current is linear to the nitric oxide concentration in the range of 6.0 × 10−7 to 8.0 × 10−6 M and the detection limit was 1.0 × 10−7 M (three times the ratio of signal to noise, S/N = 3).  相似文献   

3.
A nanostructured gold surface consisting of closely packed outwardly growing spikes is investigated for the electrochemical detection of dopamine and cytochrome c. A significant electrocatalytic effect for the electrooxidation of both dopamine and ascorbic acid at the nanostructured electrode was found due to the presence of surface active sites which allowed the detection of dopamine in the presence of excess ascorbic acid to be achieved by differential pulse voltammetry. By simple modification with a layer of Nafion, the enhanced electrocatalytic properties of the nanostructured surface was maintained while increasing the selectivity of dopamine detection in the presence of interfering species such as excess ascorbic and uric acids. Also, upon modification of the nanostructured surface with a monolayer of cysteine, the electrochemical response of immobilised cytochrome c in two distinct conformations was observed. This opens up the possibility of using such a nanostructured surface for the characterisation of other biomolecules and in bio-electroanalytical applications.  相似文献   

4.
The direct electrochemistry of cytochrome C can be performed in weak acidic and basic aqueous solutions. Cytochrome C can be deposited as a stable and electrochemically active film on a deoxyribonucleic acid (DNA) modified glassy carbon electrode. These films can also be produced on gold, platinum, and transparent semiconducting tin oxide electrodes. Two-layer modified electrodes containing cytochrome C and a DNA film were prepared by the deposition of cytochrome C on a DNA film modified electrode. The cytochrome C/DNA film was electrocatalytically oxidation active for l-cysteine in a pH 8.3 tris(hydroxymethyl)aminomethane (TRIS)-buffered aqueous solution through both FeIII and FeIV species. The electrocatalytic oxidation current developed from the anodic peak of the redox couple. The electrocatalytic oxidation properties of ascorbic acid, NH2OH, N2H4, and SO32− by a cytochrome C/DNA film were also determined, and shown to be electrocatalytically active. An electrochemical quartz crystal microbalance, cyclic voltammetry, and direct spectroelectrochemistry were used to study in situ DNA deposition on a gold disc electrode and cytochrome C deposition on DNA/Au and DNA/GC films. The direct electrochemistry of cytochrome C can also be performed, and it can be deposited as a stable and electrochemically active film on polyvinyl sulfonate, polystyrene sulfonate, TiO2, and polyethylene glycol modified glassy carbon electrodes. The results show that cytochrome C interacts with, and deposits on, a DNA film modified electrode, and that the cytochrome C (FeIII) oxidized form is more easily deposited on a DNA film than the cytochrome C (FeII) reduced form.  相似文献   

5.
In this paper we present a combined experimental and theoretical study of the heterogeneous electron transfer reaction of cytochrome c electrostatically adsorbed on metal electrodes coated with monolayers of 6-mercaptohexanoic acid. Molecular dynamics simulations and pathways calculations show that adsorption of the protein leads to a broad distribution of orientations and, thus, to a correspondingly broad distribution of electron transfer rate constants due to the orientation-dependence of the electronic coupling parameter. The adsorbed protein exhibits significant mobility and, therefore, the measured reaction rate is predicted to be a convolution of protein dynamics and tunnelling probabilities for each orientation. This prediction is confirmed by time-resolved surface enhanced resonance Raman which allows for the direct monitoring of protein (re-)orientation and electron transfer of the immobilised cytochrome c. The results provide a consistent explanation for the non-exponential distance-independence of electron transfer rates usually observed for proteins immobilized on electrodes.  相似文献   

6.
A colloidal silver nanoparticles (CSNs) chemically modified electrode was prepared and its application to the electroanalysis of Cytochrome c (Cyt. c) was studied. The CSNs were prepared by reduction of AgNO3 with NaBH4, and were stabilized by oleate. They could be efficiently immobilized on the surface of a silver electrode. The result showed that the CSNs could clearly enhance the electron transfer process between Cyt. c and the electrode compared with bulk silver electrode. Linear sweep voltammetric measurement of Cyt. c at the chemical modified electrode indicated that the oxidative peak current of Cyt. c was linear to its concentration ranging from 8.0 nmol L−1 to 3.0 μmol L−1 with the calculated detection limit was about 2.6 nmol L−1. The direct electrochemistry of Cyt. c was also studied by cyclic voltammetry.  相似文献   

7.
A robust and effective composite film combined the benefits of room temperature ionic liquid (RTIL), chitosan (Chi) and multi-wall carbon nanotubes (MWNTs) was prepared. Cytochrome c (Cyt c) was successfully immobilized on glassy carbon electrode (GCE) surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Cyt c were investigated in detail. A pair of well-defined and quasi-reversible redox peaks of Cyt c was obtained in 0.1 mol L−1 pH 7.0 phosphate buffer solution (PBS), indicating the Chi-RTIL-MWNTs film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0 × 10−6 to 2.6 × 10−4 mol L−1, with a detection limit of 8.0 × 10−7 mol L−1 (S/N = 3). The apparent Michaelis-Menten constant (Km) was calculated to be 0.45 ± 0.02 mmol L−1. Moreover, the modified electrode displayed a rapid response (5 s) to H2O2, and possessed good stability and reproducibility. Based on the composite film, a third-generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

8.
A polyelectrolyte multilayer combining cytochrome c (cyt.c) and xanthine oxidase (XOD) is assembled on a gold electrode and investigated with respect to a signal chain formation from a xanthine oxidase substrate in solution. The multilayer assembly is prepared by means of an electrostatic self-assembly technique and consists of two parts each comprising one type of protein, which is responsible for a specific function. The outer part of the film contains XOD immobilized within poly(ethylenimin) layers and is responsible for selectivity towards hypoxanthine (HX) by its enzymatic conversion to uric acid. The inner layers contain cyt.c molecules embedded into a sulfonated polyaniline (PASA) matrix. The signal transfer mechanism within the assembly is proposed to be a mediated one. Thus, cyt.c plays a role of an internal transducer translating a HX concentration into an amperometric electrode response. Formation of the multilayer structure is confirmed by surface plasmon resonance (SPR), electrochemical experiments and UV-vis spectrophotometry. Influence of the multilayer composition on sensor performance is discussed.  相似文献   

9.
A KNbO3 nanoneedles (KNs) based hydrogen peroxide (H2O2) biosensor was first proposed. Perovskite-type KNs can directly catalyze H2O2. The mechanism can be explained by Molecular Orbital Principles, with the formation of σ-bonding between the eg orbital of surface niobium ions and surface adsorbed oxygen-related intermediate species. Direct electron transfer between the Horseradish peroxidase (HRP) and electrode surface was achieved. Co-catalyst system of both HRP and KNbO3 was introduced to the oxidation of H2O2, thus the as-prepared biosensor exhibited high sensitivity (750 μA mM−1 cm−2) and ultrafast response (1–2 s) to H2O2. Therefore, KNs provide a promising material for enzymes assembly and sensing application.  相似文献   

10.
Cytochromes c3 are polyheme c-type cytochromes characterized by low redox potentials, that have been shown to develop metal-reductase activity. In this paper, different strategies are explored to immobilize one of them, Desulfovibrio vulgaris Hildenborough cytochrome c3, a highly basic tetraheme cytochrome, including adsorption, covalent bonding, imprisonment in a layer-by-layer assembly, and entrapment within cast films or a dialysis membrane. The performance and efficiency of modified (carbon or gold) electrodes have been evaluated using electrochemical (cyclic and square-wave voltammetry, current-time curves) techniques in the presence of a soluble Fe(III) complex, ammonium Fe(III) citrate acting as the soluble substrate, and chosen as a model system. The advantages and drawbacks of each strategy are discussed with the view of further extension of environmental interest to more toxic metal contaminants.  相似文献   

11.
Horse heart cytochrome c (cyt c) was chemically modified with poly(ethylene oxide) (PEO) to dissolve it in room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([emim][TFSI]). The redox response of the modified cyt c, hereafter PEO-cyt c, was analyzed in [emim][TFSI]. PEO modification to the surface of cyt c, which exceeded 60% of the total mass of the PEO-cyt c, was an effective method to solubilize the cyt c. In spite of the high ion density and sufficient ionic conductivity of [emim][TFSI], no redox response of pure PEO-cyt c was detected. However, a reversible redox response of PEO-cyt c was observed after adding a simple electrolyte such as KCl to [emim][TFSI]. The redox response of PEO-cyt c was sensitive to the anion radius of the added salt, and the chloride anion was found to be the best anion species to produce a redox response of PEO-cyt c in [emim][TFSI]. However, above a certain salt concentration, the resulting increase in solution viscosity would suppress the redox reaction. The results strongly indicate that the chloride anions, because of their mobility in the polypeptide matrix, compensate the charge change of heme during the electron transfer reaction. Larger anions did not show such an effect due to sterical restrictions on the migration through the protein shell to the heme pocket of cyt c.  相似文献   

12.
Zhihui Dai 《Electrochimica acta》2004,49(13):2139-2144
The immobilization and electrochemical behaviors of cytochrome c on a NaY zeolite modified electrode were studied. The interaction between cytochrome c and NaY zeolite particles was examined by using UV-Vis spectroscopy and electrochemical methods. The direct electron transfer of the immobilized cytochrome c exhibited a pair of redox peaks with the E1/2 of (versus SCE) in 0.1 M pH 7.0 PBS. The electrode reaction showed a surface-controlled process with a single proton transfer at the scan rate range from 20 to 500 mV s−1. Based on the immobilization of cytochrome c on NaY zeolite a high performance biosensor was constructed, which displayed an excellent response to the reduction of hydrogen peroxide (H2O2) without the aid of an electron mediator and could be used for H2O2 detection. NaY zeolite provided a good matrix for protein immobilization and biosensor preparation.  相似文献   

13.
The kinetics of electron transfer reaction between cytochrome cd1 nitrite reductase (NiR) from Pseudomonas aeruginosa and various physiological/non physiological redox partners was investigated using cyclic voltammetry at the pyrolytic graphite electrode. While NiR did not exchange electron with the electrode, cytochrome c551 and azurin, both from Ps. aeruginosa, behaved as fast electrochemical systems. The intermolecular electron transfers between NiR and cytochrome c551 or azurin as electron shuttles, in the presence of nitrite, were studied. Second order rate constants of 2×106 and 1.4×105 M−1 s−1 are calculated for cytochrome c551 and azurin, respectively. The dependence of the second-order rate constant on ionic strength and pH is discussed. Finally, the effect of the global charge of the electron shuttles was explored using differently charged species (proteins or small ions). The experimental results suggest involvement of polar interactions as well as of hydrophobic contacts in the protein recognition prior to the intermolecular electron transfer. As the cross-reaction between Ps. nautica cytochrome c552 and Ps. aeruginosa NiR was shown to be as efficient as the catalytic reaction involving the physiological partners, it is concluded to a ‘pseudo-specificity’ in the recognition between NiR and the electron donor.  相似文献   

14.
A novel DNA biosensor was fabricated by modified multilayer of ssDNA, cytochrome c, l-cysteine, metal gold nanoparticles and Chitosan (denoted as ssDNA/Cyt c/l-Cys/GNPs/Chits/GCE). The behavior of the DNA biosensor was then investigated by voltammetry, impedance spectrum and atomic force microscope (AFM), and the morphologic differences among each layer of the DNA biosensor were also observed. Results revealed that two well-defined redox peaks exhibited at 0.120 V and 0.362 V, and the amount of adsorbed DNA was 1.672 × 10−10 mol cm−2. We concluded that the modified electrode could be used to detect DNA with the indicator daunomycin.  相似文献   

15.
In the present study three different strains of Escherichia coli (JM109 - a native “wild type” strain, JM109/pBSD 1300 - a strain overproducing the membrane anchor domain of Bacillus subtilis succinate-quinone reductase, SQR, a protein that contains two transmembraneously arranged heme groups and JM109/pLUV 1900 - a strain overproducing cytochrome c550 from B. subtilis, a protein where the cytochrome domain is anchored to the membrane with a transmembrane helix) were immobilised on the surface of a spectrographic graphite electrode and tested for electrical communication using mediators. Such compounds as ferricyanide, 2,6-dichlorophenolindophenol (DCPIP) and ubiquinone (Q0) were used as soluble mediators and two flexible osmium redox polymers; poly(1-vinylimidazole)12-[Os-(4,4′-dimethyl-2,2′-di’pyridyl)2Cl2]2+/+ (osmium redox polymer I) and poly(vinylpyridine)-[Os-(N,N′-methylated-2,2′-biimidazole)3]2+/3+ (osmium redox polymer II) were co-immobilised with the bacterial cells onto the electrode surface. The effects of applied potential, buffer pH and different substrates were compared for the different combinations bacterial strains - mediators. Through the introduction of the cytochromes in the bacterial membrane it was established that it had great effect on the ability of the bacterial cells to effectively communicate with artificial mediators. The introduction of the transmembraneously arranged heme groups of B. subtilis made it possible for this strain to communicate with the Os-polymers, whereas the introduction of the cytochrome c550 had an effect especially increasing ability of Q0 to act as an efficient e acceptor.  相似文献   

16.
Cytochrome c oxidase is ubiquitous enzyme involved in the terminal step of respiratory electron transfer process. The unique binuclear copper center containing bis-dithiolato bridges form a valance delocalized [Cu1.5+-Cu1.5+] state of the metal center located at the subunit II of cytochrome c oxidase. This metal center acts as the electron entry site of the enzyme and accepts electrons from cytochrome c. Direct electrochemistry of this binuclear copper center containing the water soluble protein obtained by genetically truncating the membrane bound part of the subunit II from Thermus thermophilus was achieved by favorable orientation of the protein on glassy carbon electrode surface promoting efficient electron transfer in the presence of various surfactants. Very reproducible, Nernstian responses are obtained with CuA. The redox potential and the electrochemical response were enhanced prominently in case of cationic surfactant CTAB indicating that the nature of the surfactant has a significant effect on the microenvironment of the protein-electrode interface. The results have been used to understand the mechanism of electron transfer from cytochrome c to the copper center during the enzymatic reaction.  相似文献   

17.
Glucose oxidase (GOD) immobilized in nanogold particles (NAs)-N,N-dimethylformamide (DMF) composite film on glassy carbon (GC) electrode exhibits a pair of quasi-reversible and unstable peaks due to the redox of flavin adenine dinucleotide (FAD) of GOD. When ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) or trihexyltetradecylphosphorium bis (trifluoromethylsulfony) (P666,14 NTf2) is introduced in the film, the peaks become small. But ILs 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) and 1-octyl-3-methylimidazolium hexafluorophate (OMIMPF6) make the peaks large and stable. In different composite films the formal potential (E0′) of GOD is different. UV-vis spectra show that the GOD dispersed in these films almost retains its native structure and there are weak interactions between ILs and GOD. Electrochemical impedance spectra display that NAs can promote the electron transfer between FAD and GC electrode; and ILs can affect the electron transfer through interacting with GOD. The thermal stability of GOD entrapped in NAs-DMF-ILs composite films is also influenced by ILs, and it follows such order as: in NAs-DMF-OMIMPF6 > in NAs-DMF-BMIMPF6 ≈ in NAs-DMF-BMIMBF4 > in NAs-DMF. In addition, GOD immobilized in NAs-DMF-OMIMPF6 and NAs-DMF-BMIMPF6 films shows good catalytic activity to the oxidation of glucose. The Imax of H2O2 and the apparent Km (Michaelis-Menten constant) for the enzymatic reaction are calculated.  相似文献   

18.
A novel platform, which hemoglobin (Hb) was immobilized on core–shell structurally Fe3O4/Au nanoparticles (simplified as Fe3O4@Au NPs) modified glassy carbon electrode (GCE), has been developed for fabricating the third biosensors. Fe3O4@Au NPs, characterized using transmission electron microscope (TEM), scanning electron microscope (SEM) and energy dispersive spectra (EDS), were coated onto GCE mediated by chitosan so as to provide larger surface area for anchoring Hb. The thermodynamics, dynamics and catalysis properties of Hb immobilized on Fe3O4@Au NPs were discussed by UV–visible spectrum (UV–vis), electrochemical impedance spectroscopy (EIS), electrochemical quartz crystal microbalance technique (EQCM) and cyclic voltammetry (CV). The electrochemical parameters of Hb on Fe3O4@Au NPs modified GCE were further carefully calculated with the results of the effective working area as 3.61 cm2, the surface coverage concentration (Γ) as 1.07 × 10−12 mol cm−2, the electron-transfer rate constant (Ks) as 1.03 s−1, the number of electron transferred (n) as 1.20 and the standard entropy of the immobilized Hb (ΔS0′) as calculated to be −104.1 J mol−1 K−1. The electrocatalytic behaviors of the immobilized Hb on Fe3O4@Au NPs were applied for the determination of hydrogen peroxide (H2O2), oxygen (O2) and trichloroacetic acid (TCA). The possible functions of Fe3O4 core and Au shell as a novel platform for achieving Hb direct electrochemistry were discussed, respectively.  相似文献   

19.
Stainless steel was studied as anode for the biocatalysis of acetate oxidation by biofilms of Geobacter sulfurreducens. Electrodes were individually polarized at different potential in the range −0.20 V to +0.20 V vs. Ag/AgCl either in the same reactor or in different reactors containing acetate as electron donor and no electron acceptor except the working electrode. At +0.20 V vs. Ag/AgCl, the current increased after a 2-day lag period up to maximum current densities around 0.7 A m−2 and 2.4 A m−2 with 5 mM and 10 mM acetate, respectively. No current was obtained during chronoamperometry (CA) at potential values lower than 0.00 V vs. Ag/AgCl, while the cyclic voltammetries (CV) that were performed periodically always detected a fast electron transfer, with the oxidation starting around −0.25 V vs. Ag/AgCl. Epifluorescent microscopy showed that the current recorded by chronoamperometry was linked to the biofilm growth on the electrode surface, while CVs were more likely linked to the cells initially adsorbed from the inoculum. A model was proposed to explain the electrochemical behaviour of the biofilm, which appeared to be controlled by the pioneering adherent cells playing the role of “electrochemical gate” between the biofilm and the electrode surface.  相似文献   

20.
Zhenyu Lin  Bin Qui 《Electrochimica acta》2008,53(22):6464-6468
A glassy carbon electrode (GCE) modified with cobalt(II) meso-tetraphenylporphrine/multiwall-carbon nanotube (CoTPP/MWNT) was applied to investigate the electrochemiluminescent (ECL) behavior of luminol. The ECL intensity of luminol was found to be increased greatly on this modified electrode. The presence of cobalt(II) meso-tetraphenylporphrine (CoTPP) can catalyze the reduction of oxygen on the electrode surface to produce HOO, which can increase the ECL intensity of luminol. Moreover, MWNT can provide the more effective area of the electrode, and can act as a promoter to enhance the electrochemical reaction. The proposed method enables a detection limit for luminol of 1.0 × 10−8 mol/L in the neutral solution. Under the optimum condition, the enhanced ECL intensity of luminol by H2O2 had a linear relationship with the concentration of H2O2 in the range of 1.0 × 10−7 to 8.0 × 10−8 mol/L with the detection limit of 5.0 × 10−9 mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号