首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of nanosecond voltage pulses to electrodes provides three ways to conduct local electrochemistry on the micro- to nanometer scale. (1) The finite charging time of the double-layer capacity allows the machining of three-dimensional microstructures. (2) In an electrochemical scanning tunneling microscope, reactions are confined to the tunneling region, due to the depletion of the electrolyte in the tip--surface gap. (3) Ordering processes, following very fast electrochemical reactions, lead to unconventional island patterns on a surface.  相似文献   

2.
The confined etchant layer technique has been applied to fabricate complex three-dimensional microstructures on nitinol for the first time. HF and HNO3 were locally and simultaneously electrogenerated at the mold surface to etch a nitinol workpiece. NaOH was used as an efficient scavenger to confine the etchant close to the mold. Cyclic voltammetry was employed to study the electrochemical behavior of a Pt electrode in the etching solution in order to choose an appropriate potential for etchant generation on the mold. The thickness of the confined etchant layer was estimated to be several micrometers by inspecting the deviation of the sizes of the etched spots from the sizes of those on the microelectrode. Thus, the composition of the electrolyte could be optimized for better etching precision. By optimizing the composition of the electrolyte, complex microstructures on a Pt-Ir mold bearing the logo “XMU” of Xiamen University were successfully fabricated on nitinol. The etched patterns were approximately negative copies of the mold, and the precision of duplication could easily reach the micrometer scale.  相似文献   

3.
掺杂TiO_2制备低压ZnO压敏陶瓷   总被引:1,自引:0,他引:1  
主要研究了晶粒助长剂TiO2、烧成条件等对ZnO低压压敏陶瓷电性能的影响。结果表明:TiO2的掺入能显著促进晶粒生长,降低压敏电压V1mA,但掺入量超过一定值后一方面会生成阻止晶粒继续生长的晶界反应层,促使压敏电压又有所升高,另一方面会生成钛酸铋立方相而引起富铋晶界相含量的减少,导致非线性特性下降。提高烧成温度可以促进晶粒生长,降低压敏电压,但温度过高时由于铋的挥发加剧,利用提高烧成温度降低压敏电压会引起非线性特性和漏流等性能的劣化。  相似文献   

4.
电压施加方式在阳极氧化钛薄膜形成过程中的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
巩运兰  任云霞  杨云  白正晨  郭鹤桐 《化工学报》2007,58(12):3185-3190
采用阳极氧化的方法,通过改变电压的施加方式制备了具有不同形貌的氧化钛薄膜。使用扫描电子显微镜考察了氧化钛薄膜的形貌,结合实验现象探讨了阳极氧化钛薄膜纳米孔的形成机制。研究结果表明,采用一步施加电压和连续施加电压的方法,氧化钛薄膜纳米孔的形成过程由电压、阻挡层的厚度决定;采用两步施加电压的方法,氧化钛薄膜纳米孔的形成过程由放电电压、阻挡层的厚度和阻挡层/电解液的边界条件协同控制。在相同工艺条件下,采用两步施加电压法能够扩展阳极氧化钛薄膜纳米孔孔径和孔密度的范围。  相似文献   

5.
简要介绍了不同电解槽有载开关及有关参数的选择。指出了建设新项目时应注意的问题。  相似文献   

6.
Microporous aggregates are the key to the lightweight design and preparation of refractories for the working linings of the high temperature furnaces. In this work, the lightweight MgO-MgAl2O4 refractory aggregates with core-shell structures were prepared by in-situ decomposition synthesis technology using Mg(OH)2 and nano-size Al2O3 as raw materials. The influence of the nano-size Al2O3 content on the microstructures and properties was thoroughly studied. The results demonstrated that the microporous MgO core structures were formed after the decomposition of Mg(OH)2, and the MgAl2O4 bonds between the microporous MgO core structures were formed through the reaction between the nano-size Al2O3 and MgO. When the nano-size Al2O3 contents were less than 9 wt%, the MgAl2O4 bonds were discontinuous. With the increase of the nano-size Al2O3 contents to 9–15 wt%, more continuous MgAl2O4 bonds (i.e. MgAl2O4 shell structures) were formed at the surface of the microporous MgO core structures. Overall, the optimized specimens were lightweight MgO-MgAl2O4 refractory aggregates with the addition of 9 wt% nano-size Al2O3, which exhibited the microporous MgO@MgAl2O4 core-shell structures, a median pore size of 268 nm, a high compressive strength of 105 MPa, and a low thermal conductivity of 4.1 W/(m·K) at 800 ℃.  相似文献   

7.
《Ceramics International》2016,42(10):12194-12201
TiO2 nanoparticles are typically employed to construct the porous films for quantum dot-sensitized solar cells (QDSCs). However, undesirable interface charge recombination at grain boundaries would hinder the efficient electron transport to the conducting substrate, giving rise to the decline of open-circuit voltage (Voc). In this work, vertically aligned architectures of oriented one-dimensional (1D) TiO2 nanorod arrays hydrothermally grown on substrates pave a way in designing highly efficient QDSCs with efficient radial-directional charge transport. SEM, TEM, XRD, and Raman spectroscopy were employed to characterize the as-prepared TiO2 nanorods, showing the rutile phase with single-crystalline structure. The homogeneous deposition of CdS/CdSe QDs on the surface of TiO2 nanorods has been achieved by in-situ grown strategies (i.e., successive ionic layer absorption and reaction, and chemical bath deposition). An extremely high Voc value up to 0.77 V has been achieved for CdS/CdSe QDSCs based on the well-ordered 1D nanorod arrays. To the best of our knowledge, it is the highest Voc reported for TiO2-based QDSCs. Dependencies of photovoltaic performance, optical absorption, and interfacial charge behavior on the length of nanorods were systematically investigated. A 1.7 μm nanorod-array photoelectrode-based QDSC delivers a remarkable power conversion efficiency up to 3.57% under simulated AM 1.5 100 mW cm−2 illumination, attributed to the balance of competition between the increase of QD loading and suppression of interfacial recombination. This work highlights the combination of QDs with high absorption coefficient 1D architectures possessing efficient charge transport for constructing high efficiency solar cells.  相似文献   

8.
《Ceramics International》2022,48(22):33115-33121
As a critical topological phase transition material, SrFeOx could play an essential role in the field of resistive memory. How to implement resistance-switching more softly and ensure the stability of materials has always been a relevant research hotspot. Regulating the oxygen environment during the deposition process of the films can effectively control the stoichiometry of the functional layer and then improve the resistance-switching characteristics of the device. In this paper, a SrFeOx hetero-film was prepared by oxygen pretreatment on the SrRuO3 surface before SrFeOx deposition, and the as-assembled micrometer-scale device exhibits a low set operating voltage of 0.6 V and favorable cycling characteristics. The SrFeOx hetero-film reveals a vertical brownmillerite superlattice-like structure with ~20 nm perovskite buffer layer, which benefits the connection and rupture of conductive filament. Additionally, XPS and UV–vis were used to analyze the bonding energy and band gap of SrFeOx hetero-film, and offers the experimental basis for the explanation of the conductive mechanism. Therefore, the device based on SrFeOx hetero-film with low operation voltage provides a reference for low power consumption research on topological phase transition material.  相似文献   

9.
For high-voltage cycling of rechargeable Li batteries, a nano-scale amorphous Li-ion conductor, lithium phosphorus oxynitride (Lipon), has been coated on surfaces of LiCoO2 particles by combining a RF-magnetron sputtering technique and mechanical agitation of LiCoO2 powders. LiCoO2 particles coated with 0.36 wt% (∼1 nm thick) of the amorphous Lipon, retain 90% of their original capacity compared to non-coated cathode materials that retain only 65% of their original capacity after more than 40 cycles in the 3.0–4.4 V range with a standard carbonate electrolyte. The reason for the better high-voltage cycling behavior is attributed to reduction in the side reactions that cause increase of the cell resistance during cycling. Further, Lipon coated particles are not damaged, whereas uncoated particles are badly cracked after cycling. Extending the charge of Lipon-coated LiCoO2 to higher voltage enhances the specific capacity, but more importantly the Lipon-coated material is also more stable and tolerant of high voltage excursions. A drawback of Lipon coating, particularly as thicker films are applied to cathode powders, is the increased electronic resistance that reduces the power performance.  相似文献   

10.
In the present work, we propose a novel method to decrease the pore size as well as to enhance the strength of microporous Al2O3-MgAl2O4 refractory raw materials, which were prepared by the vacuum impregnation treatment of porous Al2O3 powders with at MgCl2 solution. The effect of the MgCl2 content (0–32.5 wt%) on the phase distribution, microstructures, and physical properties of the refractory raw materials was thoroughly investigated. The results demonstrated that the sub-micron pore structure inside the pseudomorph particles was effectively preserved due to the volume expansion effect of spinel and the spinel sintering neck formation between Al2O3 microcrystallites. With the MgCl2 content increasing from 0 to 11.9 wt%, the pseudomorph particles contained many sub-micron pores resulting from the introduction of the MgCl2 solution, resulting in the decrease of the intra-particle pore size as well as the development of spinel sintering necks between pseudomorph particles. The strength of the aggregates was therefore enhanced. With a further increase of MgCl2 content to 24.2 and 32.5 wt%, the inter-particle pore sizes increased due to the volume expansion and Kirkendall effect associated with the spinel formation between pseudomorph particles, which were responsible for the progressive decrease of the strength. Overall, the optimized samples were microporous Al2O3-MgAl2O4 refractory aggregates with the addition of 11.9 wt% MgCl2, which exhibited an apparent porosity of 45.0%, a high compressive strength of 45.6 MPa, a median pore size of only 1.49 µm, and a high sub-micron pore volume content of 42.5 vol%. Meanwhile, it is possible to obtain the porous Al2O3-MgAl2O4 powders with a large number of sub-micron pores by crushing and sieving the optimized aggregates.  相似文献   

11.
《Ceramics International》2017,43(15):11848-11854
LiNi0.5Co0.2Mn0.3O2 (523) coated with ~ 20 nm thick Y2O3 nano-membrane is prepared via a sol-type chemical precipitation process based on electrostatic attraction between the materials. The nano-Y2O3-coated 523 cathode can deliver 160.3 mA h g−1 (87.8% of its initial discharge capacity) after 50 cycles at 1 C (180 mA g−1) between 3.0 and 4.6 V by coin cell testing, while the pristine 523 keeps only 146.2 mA h g−1 with 78.6% capacity retention left. The capacity retention rate increases from 50% to 86.7% after 150 cycles at 1 C in 3.0–4.35 V by soft package testing under 45 °C. Through this novel Y2O3 coating operation, both the charge transfer resistance and the electrode polarization of the 523 electrode have been suppressed, and its structure stability is also improved.  相似文献   

12.
Direct current (DC) current‐voltage (I‐V) characteristics of silicone rubber filled with conductive carbon black (CB) were studied at room temperature in the voltage range of 1–46 V. The current‐voltage relationship can be expressed as I = AVB, where A and B are constants that show capability and property of electrical conduction, respectively. The I‐V curve can be divided into ohmic and nonohmic regions. In nonohmic region, B < 1, and the resistance increases with the rise of voltage. Higher CB loading leads to lower transforming voltage from ohmic to nonohmic region and much deviation from Ohm's law. The reason for this deviation is the unbalance between the heat generated and the heat loss of conductive silicone rubber during the measurement. When the heat effect is eliminated completely, the electrical conduction is ohmic. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 587–592, 2004  相似文献   

13.
徐香兰  韩红 《应用化工》2012,41(7):1218-1223
采用密度泛函理论方法研究了锂离子正极材料LiMn2O4电子结构及金属掺杂对其平均嵌入电压的影响。嵌锂前后差电荷密度分析表明,Mn2O4嵌锂过程中,O、Mn均得到Li给出的电子,且以O得电子为主。Al3+和Sc3+取代LiMn2O4原胞中的Mn掺杂研究表明,Al3+和Sc3+在嵌锂过程中不参与和Li的电子交换,因而导致掺杂体系具有较大的嵌入电压。且Al3+、Sc3+掺杂导致LiMn2O4电极材料稳定性提高,材料密度减小,因此Al3+和Sc3+可作为较佳的锂离子正极掺杂材料。  相似文献   

14.
15.
介绍了110 kV直降式整流装置有载调压开关的选择方式,建议选用中性点调压方式.  相似文献   

16.
徐香兰  韩红 《陕西化工》2012,(7):1218-1223
采用密度泛函理论方法研究了锂离子正极材料LiMn2O4电子结构及金属掺杂对其平均嵌入电压的影响。嵌锂前后差电荷密度分析表明,Mn2O4嵌锂过程中,0、Mn均得到Li给出的电子,且以0得电子为主。A13+和Sc3+取代LiMn2O4原胞中的Mn掺杂研究表明,AJ3+和Sc3+在嵌锂过程中不参与和Li的电子交换,因而导致掺杂体系具有较大的嵌人电压。且Al3+、Sc3+掺杂导致LiMn2O4电极材料稳定性提高,材料密度减小,因此A13+和Sc3+可作为较佳的锂离子正极掺杂材料。  相似文献   

17.
Transient liquid-phase (TLP) sintering of CaF2 additive on the densification behaviors and microstructural development of AlN ceramics are investigated. It is found that 1 wt% CaF2 can effectively promote densification process. Increasing content of CaF2 results in finer grain size and slower densification during intermediate sintering stage. XRD results show that grain-boundary phase of CaAl4O7 is formed at 1150 °C from reactions of AlN–CaF2–Al2O3. With further temperature increasing, the grain-boundary phases of CA2 and CaAl12O18, which were formed from the reaction between CaF2 and oxide layers, experienced transformations firstly into CaAl4O7 above 1600 °C and into CaAl2O4 at higher temperature. SEM and TEM results show that formed grain-boundary phases can evaporate from sintering bodies during further soaking, leaving clean grain boundaries. The efficiency of TLP sintering mechanism is further manifested by the preparation of transparent AlN ceramics with good combination properties.  相似文献   

18.
19.
Lithium-ion batteries (LIBs) possessing high energy densities are driven by the growing demands of electric vehicles (EVs) and hybrid electric vehicles (HEVs). One of the most effective strategies to improve the energy density of LIBs is to enlarge the charge cut-off voltage via a lithium salt additive for the conventional electrolyte system. Herein, lithium difluorophosphate (LIDFP) is employed to optimize and reconstruct the composition of the structure and interface for both cathode and anode, which can effectively restrain the oxidation decomposition of electrolyte as well as refrain the dissolve out of transition metals. The LiNi0.8Co0.1Mn0.1O2 (LNCM811)/graphite pouch cell with 1 wt% LIDFP in electrolyte delivers a discharge capacity retention of 91.3% at a high voltage of 4.4 V over 100 cycles, which is higher than the 82.0% of that without LIDFP additive. Additionally, the remaining capacity of LNCM811/C battery with 1 wt% LIDFP additive which is left at 60 °C for 14 days is 85.2%, and the recovery capacity is 93.3%. The LIDFP-containing electrolyte demonstrates a great application future for the LiBs operating under the high-voltage condition and high-temperature storage performance.  相似文献   

20.
《Ceramics International》2023,49(5):7956-7964
Single crystalline ternary cathode material LiNi0.5Co0.2Mn0.3O2(NCM523) can operate at extremely high voltages and could offer exceptional energy density. The single crystal morphology is less easy to form the cracks and could express better structure stability compared to the polycrystalline counterpart. However, irreversible parasitic side reactions in the interface during cycling may lead to rapid electrochemical degradations. Herein, a simple chemical wet method that modifies the single-crystal NCM523 particles with Al2O3 coating is proposed. The coating layer can effectively suppress the phase transformation and irreversible phase transition on the NCM surface during cycling. Furthermore, the cladding layer can prevent the erosion of by-products such as HF. As a result, the Al2O3 modified NCM523 delivers a high specific capacity of 192.5mAh g?1, excellent cycling stability and rate capability. The capacity retention was 91.7% after 50 cycles even at ultra-high cut-off voltage of 4.7 V. This surface engineering strategy paves the way to promote the development of small size single crystal NCM523 materials for next generation LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号