首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simulated microstructures of the TZ, ICHAZ, FGHAZ, and CGHAZ of weld joints made from two kinds of HSLA steels with 0 or 0.079 wt pct Nb were prepared by means of heat treatment. Optical microscopy and transmission electron microscopy were used to observe microstructures and the distribution of nanosized precipitates in the simulated weld heat-affected zone (HAZ). Mechanical properties of the simulated HAZ were measured by tensile tests, and the corrosion behavior in simulated seawater was studied using electrochemical and immersion tests. It was shown that the ICHAZ and CGHAZ possess the worst overall mechanical properties in both kinds of HSLA steels, and the corrosion resistance in the descending order was the BM, TZ, FGHAZ, ICHAZ, and CGHAZ. Contrasting Nb-bearing and Nb-free steel demonstrated that the strength and corrosion resistance of the simulated HAZ were enhanced by Nb microalloying, which resulted in precipitation, homogeneous microstructures, and other relative sequences. Moreover, the surface of the Nb-bearing steel formed compact corrosion product films with higher resistance to ion migration; thus, the initiation and propagation of pitting holes were effectively inhibited.  相似文献   

2.
利用Gleeble-1500热模拟试验机进行焊接热模拟实验,研究16Mn钢经微Ti和Ti-Mg处理后焊接热影响区组织及冲击性能的变化,并利用扫描电镜和能谱分析法观察和分析实验钢的夹杂与冲击断口形貌.Ti和Ti-Mg复合处理试样的热影响区显微组织分别主要是晶界块状铁素体+晶界侧板条铁素体和晶内针状铁素体+晶界块状铁素体.经Ti处理后钢中夹杂物主要为5μm左右的TiOx+MnS复合夹杂,经Ti-Mg复合脱氧后钢中夹杂物主要为2μm左右Ti-Mg-O+MnS组成的复合夹杂,且后者明显细化了钢中夹杂物尺寸.Ti-Mg复合脱氧试样中存在大量细小夹杂颗粒,一方面可钉扎裂纹,另一方面诱导形成了使大量针状铁素体,大焊接热输入条件下Ti-Mg复合脱氧试样热影响区冲击韧性明显强于单独Ti处理的试样.   相似文献   

3.
The microstructural changes that occur in a commercial HSLA-100 steel thermally cycled to simulate weld heat affected zone (HAZ) behavior were systematically investigated primarily by transmission electron microscopy (TEM). Eight different weld thermal cycles, with peak temperatures representative of four HAZ regions (the tempered region, the intercritical region, the fine-grained austenitized region, and the coarse-grained austenitized region) and cooling rates characteristic of high heat input (cooling rate (CR) = 5 °C/s) and low heat input (CR = 60 °C/s) welding were simulated in a heating/quenching dilatometer. The as-received base plate consisted of heavily tempered lath martensite, acicular ferrite, and retained austenite matrix phases with precipitates of copper, niobiumcarbonitride, and cementite. The microstructural changes in both the matrix and precipitate phases due to thermal cycling were examined by TEM and correlated with the results of (1) conventional optical microscopy, (2) prior austenite grain size measurements, (3) microhardness testing, and (4) dilatometric analysis. Many of the thermal cycles resulted in dramatic changes in both the microstructures and the properties due to the synergistic interaction between the simulated position in the HAZ and the heat input. Some of these microstructures deviate substantially from those predicted from published continuous cooling transformation (CCT) curves. The final microstructure was predominantly dependent upon peak temperature(i.e., position within the HAZ), although the cooling rate(i.e., heat input) strongly affected the microstructures of the simulated intercritical and finegrained austenitized regions. A. MATUSZESKI, formerly Summer Student, Physical Metallurgy Branch, Naval Research Laboratory.  相似文献   

4.
The present study was carried out on four steels containing 0.1 pct C-1.5 pct Mn-0.003 pct B* in common, with additions of 1 pct Cr, 0.5 pct Mo, 0.25 pct Mo + 1 pct Cr, 0.2 pct Ti + 1 pct Cr. They were designated, accordingly, as Cr, Mo, Mo-Cr, and Cr-Ti steels. All the steels exhibited a complete lath martensite microstructure with thin interlaths of retained austenite (≈0.05 pct) in the quenched condition. The normalized microstructures, granular bainite, contained massive areas of ferrite and granules of bainite laths. Both microconstituents contained a fine dispersion of cementite particles (size ≈50 Å) together with high dislocation densities. A mechanism explaining their for-mation has been given. The Cr steel, due to its low hardenability, showed in addition polygonal ferrite in the neighborhood of the so-called M-A constituent (twinned martensite and/or austenite). The annealed microstructure (using a cooling rate of 0.033 °C s?1) of the Cr steel consisted of coarse ferrite-pearlite. Addition of 0.2 pct Ti to the Cr steel markedly refined the structure, whereas an addition of 0.25 pct Mo altered the microstructure to ferrite-lower bainite. In the 0.5 pct Mo steel, polygonal ferrite was found to be completely missing. The mechanical properties of the four steels after quenching, normalizing, and annealing were investigatedvia hardness and tensile test mea-surements. An empirical equation, relating the ultimate tensile strength to the steel composition, for steels that had granular bainite microstructures in the normalized condition, was proposed. The fracture surfaces exhibited cleavage and variable-size dimples depending on the microstructure and steel composition.  相似文献   

5.
In this paper, the process of coating AerMet100 steel on forged 300M steel with laser cladding was investigated, with a thorough analysis of the chemical composition, microstructure, and hardness of the substrate and the cladding layer as well as the transition zone. Results show that the composition and microhardness of the cladding layer are macroscopically homogenous with the uniformly distributed bainite and a small amount of retained austenite in martensite matrix. The transition zone, which spans approximately 100 μm, yields a gradual change of composition from the cladding layer to 300M steel matrix. The heat-affected zone (HAZ) can be divided into three zones: the sufficiently quenched zone (SQZ), the insufficiently quenched zone (IQZ), and the high tempered zone (HTZ). The SQZ consists of martensitic matrix and bainite, as for the IQZ and the HTZ the microstructures are martensite + tempered martensite and tempered martensite + ferrite, respectively. These complicated microstructures in the HAZ are caused by different peak heating temperatures and heterogeneous microstructures of the as-received 300M steel.  相似文献   

6.
The ultrafine grained duplex steels were fabricated by austenite reverted transformation annealing of the medium manganese steels after quenching or cold rolling. The microstructures were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The mechanical properties were determined by uniaxial tensile test. It was demonstrated that both the quenched and cold rolled structures were transformed into ultrafine grained duplex structures with large fractioned austenite by ART‐annealing. Long time annealing is essential to obtain the large fractioned austenite in quenched steel, but only short time annealing is needed to get large fractioned austenite in the cold rolled sheet. The mechanical examinations indicated that ART‐annealing results in the superhigh tensile elongation (>40%) and superhigh strength (1000 MPa) in quenched steels after long time annealing but in cold rolled steels after short time annealing. Based on the analysis on the work hardening behaviors of these ART‐annealed steels, the abnormal work hardening rate was presented and analyzed. The substantially enhanced ductility was attributed to the Lüders band propagation of the ferrite matrix and/or the TRIP effects of the large fractioned austenite. At last the dynamic phase natures of both fraction and stress was proposed to interpret the abnormal hardening behaviors and the “S” shaped stress–strain curves.  相似文献   

7.
HSLA-80 and HSLA-100 steels have been subjected to weld-simulated grain-coarsened heat-affected zone (GCHAZ) and grain-refined heat-affected zone (GRHAZ) treatments at peak temperatures of 1350 °C and 950 °C, respectively, followed by varying cooling rates to approximate the weld heat inputs of 10 to 50 kJ/cm. Subsequent slow strain rate testing in synthetic seawater has been employed to assess the hydrogen embrittlement (HE) propensity of the materials. It is indicated that in spite of an increase in strength after weld simulation, further ductility deterioration, compared to the base material under similar testing conditions, did not occur in GCHAZ HSLA-100 steel and for low heat input condition of GRHAZ HSLA-80. This has been attributed to their HE resistant microstructures. Predominant acicular ferrite or lath martensite or a combination of both imparts resistance to HE, as observed in the case of grain-coarsened HSLA-100 and for the low heat input grain-refined HSLA-80 steels. The deleterious effect of bainitic-martensitic microstructure has been reflected in the ductility values of grain-coarsened HSLA-80, which is in agreement with the observation of higher susceptibility of the as-received HSLA-100 steel having a similar structure. However, contrary to its beneficial effect in the as-received HSLA-80, an acicular ferrite structure has shown vulnerability toward HE for high heat input grain-refined HSLA-80. This has been attributed to the presence of polygonal ferrite and to the development of an HE susceptible substructure on GRHAZ weld simulation.  相似文献   

8.
The Effect of A1 and Ti treatment on non-metallic inclusions and microstructures of coarse-grain HAZ in HSLA stee1 was investigated in this paper based on experiments and thermodynamic calculations.The results showed that the inclusions in A1 treated steel were mainly aluminum oxides and titanium nitrides which could not promote the formation of acicular ferrite microstructures.Microstructure of coarse-grain HAZ in A1 treated steels consists of heavy grain boundary ferrite and ferrite side plate.The inclusions in Ti treated steel were A1,Ti,Mg,Ca composite oxides with size in the range of 0.5-3μm and titanium nitrides with size less than 0.3μm.Ti composite oxide could promote the formation of acicular ferrite and microstructures of coarse-grain HAZ in Ti treated steel consists of grain boundary ferrite,small amounts of ferrite side plate and large amounts of intragranular acicular ferrite.The size of grain boundaries ferrite was increased and the amount of ferrite side plate was decreased with the increase of soaking time at the peak temperature.The amount of grain boundary ferrite and the size of acicular ferrite were also increased with the increase of cooling rate during ferrite phase formation.  相似文献   

9.
介绍了大线能量焊接在船舶建造中的应用,对比了船体结构钢与其它钢种对大线能量焊接适应性的不同要求。针对大线能量焊接热影响区韧性下降问题,提出了目前提高热影响区韧性的主要措施。指出降低碳当量、细化热影响区奥氏体晶粒尺寸、利用有益氧化物诱导晶内铁素体析出是提高船体结构钢大线能量焊接适应性的有效途径。介绍了鞍钢在热影响区组织调控技术和氧化物诱导机理研究等方面取得的成果。  相似文献   

10.
In this paper, a laboratory study has been made to develop low cost high performance steel plates with superior HAZ toughness for large heat input welding. Simulated results show that the absorbed impact energy of heat-affected zone (HAZ) at -20℃reaches above 200J when large heat inputs of 100 to 400kJ/cm were applied, suggestive of superior HAZ toughness for large heat input welding of developed steel plate. The microstructures in HAZ are transformed from mainly fine ferrite and bainite at 100kJ/cm, through an intermediate stage of ferrite, bainite and pearlite at 200 and 300kJ/cm, to nearly fine ferrite and pearlite at 400kJ/cm. The prior austenite grain size and ferrite grain size in HAZ are controlled to ~50 and ~20μm, respectively. The high HAZ toughness is due to the inhibition of prior austenite grain size at high temperatures and the formation of beneficial microstructures to HAZ toughness during continuous cooling.  相似文献   

11.
On industrial scale, high strength P- containing IF (Interstitial Free) steels were produced with both batch annealing and continuous annealing processes and their microstructures and properties were studied. Forming abilities of the two steels were compared with commercial Al- killed steel DC01 and extreme deep drawing IF steel DC04 produced with batch annealing. The results show that the microstructures of high strength IF steels are composed of equi- axial ferrite and their mechanical properties meet the requirement of relevant standard. The batch annealed high strength P- containing steels show poorer formability than continuous annealed ones. The test results of texture and orientation distribution function (ODF) demonstrate that density of ??- fiber increases in order of batch annealed high strength P- containing IF steel, commercial DC01, continuous annealed high strength P- containing IF steel and normal IF steel DC04.  相似文献   

12.
This study is concerned with effects of complex oxides on acicular ferrite (AF) formation, tensile and Charpy impact properties, and fracture toughness in heat affected zones (HAZs) of oxide-containing API X80 linepipe steels. Three steels were fabricated by adding Mg and O2 to form oxides, and various HAZ microstructures were obtained by conducting HAZ simulation tests under different heat inputs. The no. of oxides increased with increasing amount of Mg and O2, while the volume fraction of AF present in the steel HAZs increased with increasing the no. of oxides. The strengths of the HAZ specimens were generally higher than those of the base metals because of the formation of hard microstructures of bainitic ferrite and granular bainite. When the total Charpy absorbed energy was divided into the fracture initiation and propagation energies, the fracture initiation energy was maintained constant at about 75 J at room temperature, irrespective of volume fraction of AF. The fracture propagation energy rapidly increased from 75 to 150 J and saturated when the volume fraction of AF exceeded 30 pct. At 253 K (?20 °C), the total absorbed energy increased with increasing volume fraction of AF, as the cleavage fracture was changed to the ductile fracture when the volume fraction of AF exceeded 45 pct. Thus, 45 vol pct of AF at least was needed to improve the Charpy impact energy, which could be achieved by forming a no. of oxides. The fracture toughness increased with increasing the no. of oxides because of the increased volume fraction of AF formed around oxides. The fracture toughness did not show a visible correlation with the Charpy absorbed energy at room temperature, because toughness properties obtained from these two toughness testing methods had different significations in view of fracture mechanics.  相似文献   

13.
郭佳  杨善武  尚成嘉  王郢  贺信莱 《钢铁》2008,43(9):58-0
 研究了碳含量不同和显微组织不同的低合金钢的耐腐蚀性能和腐蚀行为,并和商业耐候钢09CuPCrNi做了相应的比较。在碳含量比较低的情况下,组织类型对试验钢的耐蚀性影响不大;碳含量比较高时,单相贝氏体钢的耐蚀性优于由铁素体、渗碳体(珠光体)等构成的复相组织钢。轧后水冷时,不同碳含量的钢耐蚀性差别不大;轧后空冷时,碳含量低的钢的耐蚀性优于碳含量较高的钢。用扫描电镜对锈层进行观察,可以看出耐蚀性较好的试样在腐蚀后期形成了较致密的内锈层。碳的质量分数分别为0.03%和0.1%的钢水冷后的平均腐蚀速率相差很小,但从微观角度看其点蚀发展趋势不同。加速腐蚀5个周期后,w(C)为003%的水冷钢中蚀坑尺寸不再增加,而w(C)为01%的钢中蚀坑尺寸仍有增加趋势。  相似文献   

14.
王炜  赵征志  王莹  朱涛 《钢铁》2012,47(7):64-67
 利用热模拟技术(DIL805A热膨胀仪)和显微分析方法,对不同成分体系X100/X120高强度管线钢在连续冷却转变下的显微组织的变化规律进行了研究。研究结果表明,对于无B钢,随冷速增加,组织中依次出现多边形铁素体(PF)、粒状贝氏体(GB)、贝氏体铁素体(BF)和马氏体(M)。B元素的添加使得管线钢相变开始温度降低到500℃左右,抑制了多边形铁素体的形成,促进了贝氏体的形成。为了获得高级别管线钢X100的复相组织,无B钢的冷却速度应控制在20~30℃/s,而含B钢的冷速只需控制在5~15℃/s,简化了冷却工艺。  相似文献   

15.
This study aimed at investigating effects of strain rate and test temperature on deformation and fracture behavior of three API X70 and X80 linepipe steels fabricated by varying alloying elements and hot-rolling conditions. Quasi-static and dynamic torsional tests were conducted on these steels having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar, and then the test data were compared via microstructures, tensile properties, and adiabatic shear band formation. The dynamic torsional test results indicated that the steels rolled in the single-phase region had the higher maximum shear stress than the steel rolled in the two-phase region, because their microstructures were composed mainly of acicular ferrites. Particularly in the API X80 steel rolled in the single-phase region, increased dynamic torsional properties could be explained by the decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of the adiabatic shear band formation at low temperatures was also analyzed by the energy required for void initiation and difference in effective grain size.  相似文献   

16.
The mechanical properties of heat affected zone (HAZ) of two commercial high-Nb X80 grade pipeline steels with different alloy elements were investigated using thermal simulation performed on a Gleeble-3500 thermal simulator. The results showed that the high-Nb steels have excellent weldability. Embrittlement regions appear in coarse grain heat affected zone (CGHAZ) and intercritically heat affected zone (ICHAZ); Softening region appears in fine-grain heat affected zone (FGHAZ), and the strength here was even lower than 555 MPa as required in the standard. Meanwhile, with the increase of heat input, the strength and the toughness of HAZ of steel with high Nb, C and lower alloy decrease notably. Therefore, take into account the welding procedure during manufacture of weld pipe, suitable amount of alloy elements, such as Cr, Ni, Cu, Mo and so on, is necessary for high Nb X80 heavy-thick steel plate.  相似文献   

17.
The microstructures and mechanical properties of X80 pipeline steels produced by both novel ultra fast cooling and conventional‐accelerated continuous cooling modes are investigated. Results showed that different levels of Mo addition had a remarkable effect on the microstructures and mechanical properties of the investigated pipeline steels. The proeutectoid ferrite and pearlite formation is inhibited in the high‐Mo steel and acicular ferrite is obtained over a wide range of cooling rates, whereas the dominant acicular ferrite microstructure can only be obtained when the cooling rates reach up to 5 C s?1. Very similar microstructures and mechanical properties are obtained in the low‐Mo steel produced with ultra fast cooling and in the high‐Mo steel produced by the conventional‐accelerated continuous cooling. It was proved by simulation and industrial trials that high‐strength low‐alloy steels such as pipeline steels, can be produced using the novel ultra fast cooling which also reduce alloy cost.
  相似文献   

18.
利用热模拟技术及光学显微镜、透射电镜研究了焊接热循环参数对大线能量焊接用船板钢热影响区组织和性能的影响.发现模拟焊接热影响区组织主要由粒状贝氏体、铁素体和珠光体组成,且随着峰值温度和冷却时间的变化,热影响区的组织发生较大的变化;热影响区的冲击韧性总体水平较高,均在200 J以上,冲击韧性并不随着峰值温度和冷却时间的增加而单调变化;热影响区M-A岛的数量、尺寸、分布和形态影响热影响区的韧性.   相似文献   

19.
The present study has been carried out to investigate the coarse-grained heat-affected zone (CGHAZ) microstructure and crack tip opening displacement (CTOD) toughness of grade StE 355 Ti-microalloyed offshore steels. Three parent plates (40-mm thick) were studied, two of which had Ti microalloying with either Nb + V or Nb also present. As a third steel, conventional StE 355 steel without Ti addition was welded for comparison purposes. Multipass tandem submerged arc weld (SAW) and manual metal arc weld (SMAW) welds were produced. Different heat-affected zone (HAZ) microstructures were simulated to ascertain the detrimental effect of welding on toughness. All HAZ microstructures were examined using optical and electron microscopy. It can be concluded that Ti addition with appropriate steel processing, which disperses fine TiN precipitates uniformly, with a fine balance of other microalloying elements and with a Ti/N weight ratio of about 2.2, is beneficial for HAZ properties of StE 355 grade steel.  相似文献   

20.
Tensile and impact properties were determined for a steel (3 wt pct Cr-1.5 wt pct Mo-0.1 wt pct V-0.1 wt pct C) considered a candidate for elevated-temperature pressure-vessel applications. The steel was tested in two heat-treated conditions: normalized and tempered and quenched and tempered for various tempering conditions. Similar tempering treatments for the quenched and the normalized steels led to similar strengths. However, for the lowest tempering parameter used, the impact properties for the quenched-and-tempered steel exceeded those for the normalized-and-tempered steel, resulting in an excellent ductile-brittle transition temperature (-70 °C) and upper-shelf energy (225 J) for the quenched-and-tempered steel at a high strength (770 MPa ultimate tensile strength). Further tempering reduced the strength for the steel in both heat-treated conditions. The impact properties of the quenched steel were only slightly changed by further tempering, but those for the normalized steel improved, eventually equaling those for the quenched-and-tempered steel. The difference in impact properties after the two heat treatments was attributed to a difference in bainite microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号