首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to improve the efficiency of energy conversion for a photovoltaic (PV) system, a soft-switching boost converter using a simple auxiliary resonant circuit, which is composed of an auxiliary switch, a diode, a resonant inductor, and a resonant capacitor, is adopted in this paper. The conventional boost converter decreases the efficiency because of hard switching, which generates losses when the switches are turned on/off. During this interval, all switches in the adopted circuit perform zero-current switching by the resonant inductor at turn-on, and zero-voltage switching by the resonant capacitor at turn-off. This switching pattern can reduce the switching losses, voltage and current stress of the switching device. Moreover, it is very easy to control. In this paper, we have analyzed the operational principles of the adopted soft-switching boost converter, and it is designed for PV generation system. Simulation and experimental results are presented to confirm the theoretical analysis.   相似文献   

2.
A new soft switching converter is presented for medium power applications. Two full-bridge converters are connected in series at high voltage side in order to limit the voltage stress of power switches at Vin/2. Therefore, power metal–oxide–semiconductor field-effect transistors (MOSFETs) with 600 V voltage rating can be adopted for 1200 V input voltage applications. In order to balance two input split capacitor voltages in every switching cycle, two flying capacitors are connected on the AC side of two full-bridge converters. Phase-shift pulse-width modulation (PS-PWM) is adopted to regulate the output voltage. Based on the resonant behaviour by the output capacitance of MOSFETs and the resonant inductance, active MOSFETs can be turned on under zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. Two full-bridge converters are used in the proposed circuit to share load current and reduce the current stress of passive and active components. The circuit analysis and design example of the prototype circuit are provided in detail and the performance of the proposed converter is verified by the experiments.  相似文献   

3.
This paper begins by reviewing current bus converters and exploring their limitations. Next, a family of inductor-less bus converters is proposed to overcome the limitations. In the new bus converters, magnetizing current is used to achieve zero-voltage-switching (ZVS) turn-on for all switches. The resonant concept is used to achieve nearly zero-current-switching (ZCS) turn-off for the primary switches and no body diode loss for the synchronous rectifiers (SRs). Meanwhile, the self-driven method can be easily applied to save drive loss of SRs. Based on these concepts, a full-bridge bus converter is built in the quarter-brick size to verify the analysis. The experimental results indicate that it can achieve 95.5% efficiency at 500-W, 12-V/45-A output. Compared with industry products, this topology can dramatically increase the power density. These concepts are also applied to nonisolated dc/dc converters. As an example, a resonant Buck converter is proposed and experimentally demonstrated.  相似文献   

4.
Quasi-square-wave converters: topologies and analysis   总被引:2,自引:0,他引:2  
A class of converters with zero-voltage or zero-current switching characteristics is analyzed using a method originally developed for quasiresonant and PWM (pulsewidth-modulated) converters. The method relies on identifying simple three-terminal structures, called converter sections, that contain the switches and the resonant tank elements. The various zero-voltage-switched and zero-current-switched converters are obtained by permutation of these converter sections between source and sink. The method unifies the analysis of this class of converters in a single equivalent circuit model. The voltage and current waveforms in these converters are essentially squarelike except during the turn-on and turn-off switching intervals  相似文献   

5.
A resonant frequency-modulation method is presented as an alternative to the switching frequency-modulation method to regulate resonant converters. A switch-controlled inductor and switch-controlled capacitor, in which switching losses are found to be very low due to zero-current or zero-voltage switching, are developed to do so. A new family of resonant converters that are regulated at a fixed switching frequency is proposed. A steady-state analysis of the Class E resonant converter regulated by a switch-controlled capacitor is presented. Theoretical and experimental results verify the validity of the proposed method. The efficiency measured from a breadboard of 1 MHz, 5 V, 25 W Class E regulated resonant DC-DC converter is up to 83%  相似文献   

6.
王强  王有政  王天施  刘晓琴 《电子学报》2000,48(11):2263-2266
中小功率单相全桥逆变器常以金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)作为开关器件,为实现逆变器在高开关频率下的节能运行,本文提出了一种单相全桥节能型谐振极逆变器拓扑结构,其桥臂上分别并联相同的辅助谐振电路.桥臂上的主开关开通前,其并联的谐振电容的电压能周期性变为零,使主开关完成零电压软开通,可消除MOSFET的容性开通损耗,有利于逆变器的节能运行.本文分析了电路的工作模态,实验结果表明主开关器件处于零电压软切换.因此,该拓扑结构对于研发高性能的中小功率单相全桥逆变器具有参考价值.  相似文献   

7.
刘晓悦 《电子器件》2021,44(1):46-51
本文介绍了一种新的高功率双向隔离式DC/DC变换器。DC/DC转换器使用基于氮化镓(GaN)的功率开关器件。本文对10 kW GaN大功率DC/DC变换器的拓扑结构进行了优化,参数化和分析,并通过仿真和验证了其有效性。它由两个单相全桥电路、两个输入输出电感和一个高频变压器组成。高频变压器在实现两个全桥变换器之间的电流隔离方面起着至关重要的作用。使用MATLAB仿真软件对10 kW的变换器进行了建模。MATLAB仿真结果验证了变换器的性能适合于高功率应用并能实现轻负载条件下的零电压开通(ZVS)和零电流关断(ZCS)。然后,设计了一个7 kW的实验原型,以验证所设计拓扑的有效性。  相似文献   

8.
Soft Switching Circuit for Interleaved Boost Converters   总被引:1,自引:0,他引:1  
A zero-voltage switching-zero-current switching interleaved boost converter is proposed in this paper. An active circuit branch in parallel with the main switches is added and it is composed of an auxiliary switch and a snubber capacitor. By using this interleaved converter topology, zero current turn-on and zero voltage turn-off of the main switches can be achieved and the reverse-recovery loss of boost diode can be reduced. In addition, the auxiliary switches are zero-voltage transmission during the whole switching transition. A prototype of boost converter rated at 1.2kW has been built to confirm the effectiveness of the converter  相似文献   

9.
戴慧 《通信电源技术》2011,28(4):15-17,87
文章研究了一种采用无源辅助电路的零电压开关移相全桥变换器,它是在传统全桥拓扑上加入了由电容和电感组成的无源辅助电路,从而可以在整个输入电压和全负载范围内实现原边所有开关管的零电压开关。文中详细分析了该变换器的工作原理及其特性,并对辅助电路参数进行了设计。在此基础上,设计完成了一台1.2kW(50V/24A),开关频率为100kHz的样机,实验结果验证了该变换器的优越性。  相似文献   

10.
A novel self-excited forward DC-DC power converter is proposed. The turn-on and turn-off of the switch are zero-voltage-switching with resonant transition. A saturable core is used to achieve the self-excitation and the zero-voltage-switched resonant transition. The voltage waveform across the switch is trapezoidal with sinusoidal transitions, and the current waveform flowing through the switch is quasisquare. The switching losses, the conduction losses and the stresses of the switch are significantly reduced in the proposed power converter. The output voltage is determined by the ON duty ratio of the switch as in a PWM converter. Two methods to modulate the ON duty ratio are proposed. Both methods results in variable-frequency operation. Experiments on two 5 V, 20 A DC-DC power converters show good performance  相似文献   

11.
This paper proposes a novel self-oscillating, boost-derived (SOBD) dc-dc converter with load regulation. This proposed topology utilizes saturable cores (SCs) to offer self-oscillating and output regulation capabilities. Conventionally, the self-oscillating dc transformer (SODT) type of scheme can be implemented in a very cost-effective manner. The ideal dc transformer provides both input and output currents as pure, ripple-free dc quantities. However, the structure of an SODT-type converter will not provide regulation, and its oscillating frequency will change in accordance with the load. The proposed converter with SCs will allow output-voltage regulation to be accomplished by varying only the control current between the transformers, as occurs in a pulse-width modulation (PWM) converter. A control network that combines PWM schemes with a regenerative function is used for this converter. The optimum duty cycle is implemented to achieve low levels of input- and output-current ripples, which are characteristic of an ideal dc transformer. The oscillating frequency will spontaneously be kept near-constant, regardless of the load, without adding any auxiliary or compensation circuits. The typical voltage waveforms of the transistors are found to be close to quasisquare. The switching surges are well suppressed, and the voltage stress of the component is well clamped. The turn-on/turn-off of the switch is zero-voltage switching (ZVS), and its resonant transition can occur over a wide range of load current levels. A prototype circuit of an SOBD converter shows 86% efficiency at 48-V input, with 12-V, 100-W output, and presents an operating frequency of 100 kHz.  相似文献   

12.
A new family of isolated, zero voltage switched power converters which utilizes the magnetizing inductance of the transformer to achieve zero voltage turn-on of the primary switches is proposed. By employing saturable inductor(s) on the secondary side, soft turn-off of the output rectifier(s) is obtained with a minimum circulating energy flowing through the power converter. The proposed converters can operate either with a variable or a constant switching frequency. A complete DC analysis and design guidelines for the half-bridge topology are described, and the performance of a 100 W experimental power converter is presented  相似文献   

13.
This paper presents a magnetically coupled regenerative turn-on and turn-off snubber configuration applied to a boost converter, which operates in continuous conduction mode (CCM). In addition to reducing the stresses in the switch, providing soft transitions in its turn-off voltage and turn-on current, it transfers the energy stored in the snubber capacitor to the load. This is achieved by using a coupled inductor mounted on the main inductor of the converter, which resets the capacitor voltage at each switching period. Design equations, as well as experimental results are presented, showing the high performance of the boost converter using the proposed snubber  相似文献   

14.
A novel single-stage full-bridge series-resonant buck-boost inverter (FB-SRBBI) is proposed in this paper. The proposed inverter only includes a full-bridge topology and a LC resonant tank without auxiliary switches. The output voltage of the proposed inverter can be larger or lower than the dc input voltage, depending on the instantaneous duty-cycle. This property is not found in the classical voltage source inverter, which produces an ac output instantaneous voltage always lower than the dc input voltage. The proposed inverter circuit topology provides the main switch for turn-on at ZCS by a resonant tank. The nonlinear control strategy is designed against the input dc perturbation and achieves well dynamic regulation. An average approach is employed to analyze the system. A design example of 500 W dc/ac inverter is examined to assess the inverter performance and it provides high power efficiency above 90% under the rated power.  相似文献   

15.
Generalized half-bridge and full-bridge resonant converter topologies with two, three and four energy storage elements are presented. All possible circuit topologies for such converters under voltage/current driven and voltage/current sinks are discussed. Many of these topologies have not been investigated in open literature. Based on their circuit element connections and source and load excitation types, these topologies are classified into resonant and nonresonant topologies and on their physical realizability. Comparison based on exact steady state analysis are given for typical second- and third-order series resonant converters whereas the fourth-order topology is based on the approximate analysis  相似文献   

16.
Conventional series resonant converters have researched and applied for high-efficiency power units due to the benefit of its low switching losses. The main problems of series resonant converters are wide frequency variation and high circulating current. Thus, resonant converter is limited at narrow input voltage range and large input capacitor is normally adopted in commercial power units to provide the minimum hold-up time requirement when AC power is off. To overcome these problems, the resonant converter with auxiliary secondary windings are presented in this paper to achieve high voltage gain at low input voltage case such as hold-up time duration when utility power is off. Since the high voltage gain is used at low input voltage cased, the frequency variation of the proposed converter compared to the conventional resonant converter is reduced. Compared to conventional resonant converter, the hold-up time in the proposed converter is more than 40ms. The larger magnetising inductance of transformer is used to reduce the circulating current losses. Finally, a laboratory prototype is constructed and experiments are provided to verify the converter performance.  相似文献   

17.
针对典型的ZCT-PWM boost电路只能实现主开关零电流关断,不能实现软开启,而辅助开关只能实现零电流开启,不能实现软关断的问题。文章提出了一种新型ZCT-PWM Boost变换器的拓扑结构和控制方法,实现了主开关零电流开启及零电压关断,辅助开关零电流开启和零电压且零电流关断,从而大大降低了开关损耗,提高了变换器的效率。利用计算机仿真证明了电路的可行性及优越性。  相似文献   

18.
A new design approach achieving very high conversion efficiency in low-voltage high-power isolated boost dc–dc converters is presented. The transformer eddy-current and proximity effects are analyzed, demonstrating that an extensive interleaving of primary and secondary windings is needed to avoid high winding losses. The analysis of transformer leakage inductance reveals that extremely low leakage inductance can be achieved, allowing stored energy to be dissipated. Power MOSFETs fully rated for repetitive avalanches allow primary-side voltage clamp circuits to be eliminated. The oversizing of the primary-switch voltage rating can thus be avoided, significantly reducing switch-conduction losses. Finally, silicon carbide rectifying diodes allow fast diode turn-off, further reducing losses. Detailed test results from a 1.5-kW full-bridge boost dc–dc converter verify the theoretical analysis and demonstrate very high conversion efficiency. The efficiency at minimum input voltage and maximum power is 96.8%. The maximum efficiency of the proposed converter is 98%.   相似文献   

19.
Soft switching active snubbers for DC/DC converters   总被引:9,自引:0,他引:9  
A soft-switching active snubber is proposed to reduce the turn-off losses of the insulated gate bipolar transistor (IGBT) in a buck power converter. The soft-switching snubber provides zero-voltage switching for the IGBT, thereby reducing its high turn-off losses due to the current tailing. The proposed snubber uses an auxiliary switch to discharge the snubber capacitor. This auxiliary switch also operates at zero-voltage and zero-current switching. The size of the auxiliary switch compared to the main switch makes this snubber a good alternative to the conventional snubber or even to passive low-loss snubbers. The use of the soft-switching active snubber permits the IGBT to operate at high frequencies with an improved RBSOA. In the experimental results reported for a 1 kW, 40 kHz prototype, combined switching/snubbing losses are reduced by 36% through the use of the active snubber compared to a conventional RCD snubber. The use of an active snubber allows recovery of part of the energy stored in the snubber capacitor during turn-off. The generic snubber cell for the buck power converter is generalized to support the common nonisolated DC/DC power converters (buck, boost, buck-boost, Cuk, sepic, zeta) as well as isolated DC/DC power converters (forward, flyback, Cuk, and sepic)  相似文献   

20.
This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50–420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50–125, 125–250 and 250–420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号