首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report p-i-n type InSb-based high-speed photodetectors grown on GaAs substrate. Electrical and optical properties of photodetectors with active areas ranging from 7.06/spl times/10/sup -6/ cm/sup 2/ to 2.25/spl times/10/sup -4/ cm/sup 2/ measured at 77 K and room temperature. Detectors had high zero-bias differential resistances, and the differential resistance area product was 4.5 /spl Omega/ cm/sup 2/. At 77 K, spectral measurements yielded high responsivity between 3 and 5 /spl mu/m with the cutoff wavelength of 5.33 /spl mu/m. The maximum responsivity for 80-/spl mu/m diameter detectors was 1.00/spl times/10/sup 5/ V/W at 4.35 /spl mu/m while the detectivity was 3.41/spl times/10/sup 9/ cm Hz/sup 1/2//W. High-speed measurements were done at room temperature. An optical parametric oscillator was used to generate picosecond full-width at half-maximum pulses at 2.5 /spl mu/m with the pump at 780 nm. 30-/spl mu/m diameter photodetectors yielded 3-dB bandwidth of 8.5 GHz at 2.5 V bias.  相似文献   

2.
Infrared focal plane arrays (IRFPAs) are a critical component in advanced infrared imaging systems. IRFPAs are made up of two parts, a detector array and a readout integrated circuit (ROIC) multiplexer. Current ROIC technology has typical pitch sizes of 20/spl times/20 to 50/spl times/50 /spl mu/m/sup 2/. In order to make antenna-coupled detectors suited for infrared imaging systems, two-dimensional (2-D) arrays have been fabricated that cover a whole pixel area with the penalty of increasing the noise figure of the detector and, therefore, reducing its performance. By coupling a Fresnel zone plate lens to a single element antenna-coupled detector, infrared radiation can be collected over a typical pixel area and still keep low-noise levels. A Fresnel zone plate lens coupled to a single-element square-spiral-coupled infrared detector has been fabricated and its performance compared to single element antenna-coupled detectors and 2-D arrays of antenna coupled detectors. Measurements made at 10.6 /spl mu/m showed a two-order-of-magnitude increase in SNR and a /spl sim/3/spl times/ increase in D/sup */ as compared to 2-D arrays of antenna-coupled detectors.  相似文献   

3.
We conduct a theoretical analysis of the design, fabrication, and performance measurement of high-power and high-brightness strained quantum-well lasers emitting at 0.98 /spl mu/m. The material system of interest consists of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. Some key parameters of the laser structure are theoretically analyzed, and their effects on the laser performance are discussed. The laser material is grown by metal-organic chemical vapor deposition and demonstrates high quality with low-threshold current density, high internal quantum efficiency, and extremely low internal loss. High-performance broad-area multimode and ridge-waveguide single-mode laser devices are fabricated. For 100-/spl mu/m-wide stripe lasers having a cavity length of 800 /spl mu/m, a high slope efficiency of 1.08 W-A, a low vertical beam divergence of 34/spl deg/, a high output power of over 4.45 W, and a very high characteristic temperature coefficient of 250 K were achieved. Lifetime tests performed at 1.2-1.3 W (12-13 mW//spl mu/m) demonstrates reliable performance. For 4-/spl mu/m-wide ridge waveguide single-mode laser devices, a maximum output power of 394 mW and fundamental mode power up to 200 mW with slope efficiency of 0.91 mW//spl mu/m are obtained.  相似文献   

4.
Progress in plasma and reactive molecular beam epitaxy (PMBE and RMBE) grown n- and p-type GaN and GaN-AlGaN-based epitaxial films and optoelectronic devices is reviewed. The growth of GaN by RMBE (PMBE) is achieved by employing ammonia gas (plasma activated nitrogen) as the nitrogen source with resultant growth rates of about 2 μm/h (⩾1 μm/h). The structural, electrical, and optical properties of binary and ternary (Al,Ga)N and (In,Ga)N layers point to high quality. The GaN layers with Mg as the dopant atoms are p-type without any postgrowth treatment, but the hole concentrations are limited to mid 1017 cm-3 although reports in the low 1018 cm-3 dot the literature. The background carrier concentration, mobility, optical characteristics and ability to dope p-type depend significantly on the substrate temperature and V-III ratio employed, AlGaN-GaN, and GaN-InGaN electroluminescent devices have been realized but lack commercial quality. The AlGaN-GaN photodiodes by RMBE exhibited a maximum zero-bias responsivity of 0.12 A/W at 364 nm, which decreased by more than three orders of magnitude for wavelengths longer than 390 nm. A reverse bias of -10 V raised the responsivity to 0.15 A/W without any significant increase in noise. The noise equivalent noise power near zero bias is below the detection limit of the measurement setup. At a reverse bias of 28 V, the total noise equivalent power is 2.06×10-11 W  相似文献   

5.
High-efficiency optical emission past 1.3 /spl mu/m of GaInNAs on GaAs, with an ultimate goal of a high-power 1.55-/spl mu/m vertical-cavity surface-emitting laser (VCSEL), has proven to be elusive. While GaInNAs could theoretically be grown lattice-matched to GaAs with a very small bandgap, wavelengths are actually limited by the N solubility limit and the high In strain limit. By adding Sb to the GaInNAs quaternary, we have observed a remarkable shift toward longer luminescent wavelengths while maintaining high intensity. The increase in strain of these new alloys necessitates the use of tensile strain compensating GaNAs barriers around quantum-well (QW) structures. With the incorporation of Sb and using In concentrations as high as 40%, high-intensity photoluminescence (PL) was observed as long as 1.6 /spl mu/m. PL at 1.5 /spl mu/m was measured with peak intensity over 50% of the best 1.3 /spl mu/m GaInNAs samples grown. Three QW GaIn-NAsSb in-plane lasers were fabricated with room-temperature pulsed operation out to 1.49 /spl mu/m.  相似文献   

6.
We consider the combination of nonequilibrium Auger suppression with cavity enhancement, this being either resonant cavity enhancement (RCE) or photonic crystal enhancement (PCE) as a means to suppress generation-recombination processes in intrinsic semiconductor-based long wavelength infrared detectors. The aim is to approach the background-limited operation of narrow-bandgap compound semiconductor photodetectors in the 3-14 /spl mu/m infrared wavelength range without cooling or possibly with slight cooling. Auger generation-recombination processes are suppressed utilizing exclusion, extraction, magnetoconcentration, or some of their combinations. The residual radiative recombination is removed by enclosing the detector active area into a cavity with a radiative shield (resonant cavity or photonic crystal) and using the benefits of reabsorption (photon recycling) to effectively increase radiative lifetime.  相似文献   

7.
Optical imaging of objects within highly scattering media, such as tissue, requires the detection of ballistic/quasi-ballistic photons through these media. Recent works have used phase/coherence domain or time domain tomography (femtosecond laser pulses) to detect the shortest path photons through scattering media. This work explores an alternative, angular domain imaging, which uses collimation detection capabilities of small acceptance angle devices to extract photons emitted aligned closely to a laser source. It employs a high aspect ratio, micromachined collimating detector array fabricated by high-resolution silicon surface micromachining. Consider a linear collimating array of very high aspect ratio (200: 1) containing 51/spl times/1000 /spl mu/m etched channels with 102-/spl mu/m spacing over a 10-mm silicon width. With precise array alignment to a laser source, unscattered light passes directly through the channels to the charge coupled device detector and the channel walls absorb the scattered light at angles >0.29/spl deg/. Objects within a scattering medium were scanned quickly with a computer-controlled Z axis table. High-resolution images of 100-/spl mu/m-wide lines and spaces were detected at scattered-to-ballistic ratios of 5/spl times/10/sup 5/: 1, with objects located near the middle of the sample seen at even higher levels. At >5/spl times/10/sup 6/: 1 ratios, a uniform background of scattered illumination degrades the image contrast unless recovered by background subtraction. Monte Carlo simulation programs designed to test the angular domain imaging concept showed that the collimator detects the shortest path length photons, as in other optical tomography methods. Furthermore, the collimator acts as an optical filter to remove scattered light while preserving the image resolution. Simulations suggest smaller channels and longer arrays could enhance detection by >100.  相似文献   

8.
The effect of the quantum-well nitride content on the differential gain and linewidth enhancement factor of dilute-nitride GaAs-based near 1.3-/spl mu/m lasers was studied. Gain-guided and ridge waveguide lasers with 0%, 0.5%, and 0.8% nitrogen content InGaAsN quantum wells were characterized. Experiment shows that the linewidth enhancement factor is independent on the nitride content, and is in the range 1.7-2.5 for /spl lambda/=1.22--1.34 /spl mu/m dilute-nitride GaAs-based lasers. Differential gain and index with respect to either current or carrier concentration are reduced in dilute-nitride devices.  相似文献   

9.
We investigate the potential of large optical cavity (LOC)-laser structures for AlGaInP high-power lasers. For that we study large series of broad area lasers with varying waveguide widths to obtain statistically relevant data. We study in detail I/sub th/, /spl alpha//sub i/, /spl eta//sub i/, and P/sub max/, and analyze above-threshold behavior including temperature stability and leakage current. We got as expected for LOC structures minimal /spl alpha//sub i//spl les/1 cm/sup -1/ resulting in /spl eta//sup d/=1.1 W/A for 64/spl times/2000 /spl mu/m/sup 2/ uncoated devices. We obtain total output powers /spl ges/3.2 W (qCW) and /spl ges/1.5 W (CW) at 20/spl deg/C.  相似文献   

10.
Recent progress in semiconductor quantum-dot (QD) lasers approaches qualitatively new levels, when dramatic progress in the development of the active medium already motivates search for new concepts in device and system designs. QDs, which represent coherent inclusions of narrower bandgap semiconductor in a wider gap semiconductor matrix, offer a possibility to extend the wavelength range of heterostructure lasers on GaAs substrates to 1.3 /spl mu/m and beyond and create devices with dramatically improved performance, as compared to commercial lasers on InP substrates. Low-threshold current density (100 A/cm/sup 2/), very high characteristic temperature (170 K up to 65/spl deg/C), and high differential efficiency (85%) are realized in the same device. The possibility to stack QDs (e.g., tenfold) without an increase in the threshold current density and any degradation of the other device parameters allow realization of high modal gain devices suitable for applications in 1.3-/spl mu/m short-cavity transmitters and vertical-cavity surface-emitting lasers (VCSELs). The 1.3-/spl mu/m QD GaAs VCSELs operating at 1.2-mW continuous-wave output power at 25/spl deg/C are realized, and long operation lifetime is manifested. Evolution of GaAs-based 1.3-/spl mu/m lasers offers a unique opportunity for telecom devices and systems. Single-epitaxy VCSEL vertical integration with intracavity electrooptic modulators for lasing wavelength adjustment and/or ultrahigh-frequency wavelength modulation is possible. Arrays of wavelength-tunable VCSELs and wavelength-tunable resonant-cavity photodetectors may result in a new generation of "intelligent" cost-efficient systems for ultrafast data links in telecom.  相似文献   

11.
Design, fabrication, and characterization of high-performance Al/sub x/Ga/sub 1-x/N-based photodetectors for solar-blind applications are reported. Al/sub x/Ga/sub 1-x/N heterostructures were designed for Schottky, p-i-n, and metal-semiconductor-metal (MSM) photodiodes. The solar-blind photodiode samples were fabricated using a microwave compatible fabrication process. The resulting devices exhibited extremely low dark currents. Below 3fA, leakage currents at 6-V reverse bias were measured on p-i-n samples. The excellent current-voltage (I--V) characteristics led to a detectivity performance of 4.9/spl times/10/sup 14/ cmHz/sup 1/2/W/sup -1/. The MSM devices exhibited photoconductive gain, while Schottky and p-i-n samples displayed 0.09 and 0.11 A/W peak responsivity values at 267 and 261 nm, respectively. A visible rejection of 2/spl times/10/sup 4/ was achieved with Schottky samples. High-speed measurements at 267 nm resulted in fast pulse responses with greater than gigahertz bandwidths. The fastest devices were MSM photodiodes with a maximum 3-dB bandwidth of 5.4 GHz.  相似文献   

12.
We report high power (>36 W) with beam propagation factor M/sup 2//spl sim/2 in a diode end-pumped Tm:LiYF/sub 4/ (Tm:YLF) laser generating output near the 1.91-/spl mu/m region. Using the 1.91-/spl mu/m emission and high brightness achieved with the Tm:YLF laser we resonantly end-pump the Holmium /sup 5/I/sub 7/ manifold in Ho:YAG and demonstrate /spl sim/19 W of continuous-wave (CW) output. The diode-to-Holmium optical to-optical conversion efficiency achieved is /spl sim/18%. Using a CW pumped and repetitively Q-switched configuration, the Tm:YLF pumped Ho:YAG laser achieves >16 W of output power with an M/sup 2//spl sim/1.48 at 15 kHz. A Q-switched frequency range of 9 to >50 kHz is also achieved.  相似文献   

13.
Quantum-dot gain material fabricated by self-organized epitaxial growth on GaAs substrates is used for the realization of 980-nm and 1.3-/spl mu/m single-mode distributed feedback (DFB) lasers and edge-emitting microlasers. Quantum-dot specific properties such as low-threshold current, broad gain spectrum, and low-temperature sensitivity could be demonstrated on ridge waveguide and DFB lasers in comparison to quantum-well-based devices. 980-nm DFB lasers exhibit stable single-mode behavior from 20/spl deg/C up to 214/spl deg/C with threshold currents < 15 mA (1-mm cavity length). Utilizing the low-bandgap absorption of quantum-dot material miniaturized monolithically integrable edge-emitting lasers could be realized by deeply etched Bragg mirrors with cavity lengths down to 12 /spl mu/m. A minimum threshold current of 1.2 mA and a continuous-wave (CW) output power of >1 mW was obtained for 30-/spl mu/m cavity length. Low-threshold currents of 4.4 mA could be obtained for 1.3-/spl mu/m emitting 400-/spl mu/m-long high-reflection coated ridge waveguide lasers. DFB lasers made from this material by laterally complex coupled feedback gratings show stable CW single-mode emission up to 80/spl deg/C with sidemode suppression ratios exceeding 40 dB.  相似文献   

14.
The fabrication and characteristics of edge-emitting quantum-cascade (QC) lasers and microlasers with monolithically integrated deeply etched semiconductor-air Bragg-mirrors based on GaAs is reported. We observe a reduction of the threshold current density by 25% and an increase of the operation temperature by 23 K to a maximum of 315 K for 800 /spl mu/m long devices by employing Bragg-mirrors. Devices with ultra-short cavities of about 100 /spl mu/m (/spl sim/40 times the wavelength) operate up to 260 K. At 80 K, these devices show threshold currents as low as 0.63 A and output levels up to 56 mW. In these devices, longitudinal single mode operation with output levels exceeding 7.7, 5.6, and 2.8 mW was measured at 180, 200, and 240 K, respectively. This can be attributed to the limited gain bandwidth of QC lasers and the large mode spacing in these devices. By temperature control the emission wavelength can be tuned without mode jumps over 80 nm. The feasibility to pre-select the emission wavelength by a direct control of the Fabry-Perot mode was demonstrated by microlasers with 1 /spl mu/m cavity length difference.  相似文献   

15.
We report on solar-blind metal-semiconductor-metal (MSM) detectors fabricated on stacks of (Al,Ga)N layers with different Al mole fraction. These structures were grown by molecular beam epitaxy on sapphire substrates to allow backside illumination and a low-temperature GaN buffer layer. They consist of a 0.3-0.4-/spl mu/m active layer grown on a thick (Al,Ga)N window layer (/spl ap/1 /spl mu/m) that is transparent at the wavelength of interest. Different Al contents were used in the window layer. We observed that, in general, samples with a high Al content were cracked, which is explained in terms of mechanical strain. MSM photodetectors fabricated on these samples showed large leakage currents that were correlated with the crack density. In order to reduce the strain and eliminate the cracks, we inserted an AlN layer between the buffer and window layer. A crack-free sample was obtained and the solar-blind photodetector fabricated on this structure showed record performance.  相似文献   

16.
Different electrostatic discharge (ESD) protection schemes have been investigated to find the optimal ESD protection design for an analog input/output (I/O) buffer in 0.18-/spl mu/m 1.8- and 3.3-V CMOS technology. Three power-rail ESD clamp devices were used in power-rail ESD clamp circuits to compare the protection efficiency in analog I/O applications, namely: 1) gate-driven NMOS; 2) substrate-triggered field-oxide device, and 3) substrate-triggered NMOS with dummy gate. From the experimental results, the pure-diode ESD protection devices and the power-rail ESD clamp circuit with gate-driven NMOS are the suitable designs for the analog I/O buffer in the 0.18-/spl mu/m CMOS process. Each ESD failure mechanism was inspected by scanning electron microscopy photograph in all the analog I/O pins. An unexpected failure mechanism was found in the analog I/O pins with pure-diode ESD protection design under ND-mode ESD stress. The parasitic n-p-n bipolar transistor between the ESD clamp device and the guard ring structure was triggered to discharge the ESD current and cause damage under ND-mode ESD stress.  相似文献   

17.
By measuring the spontaneous emission (SE) from normally operating /spl sim/1.3-/spl mu/m GaInNAs-GaAs-based lasers we have quantitatively determined the variation of each of the current paths present in the devices as a function of temperature from 130 K to 370 K. From the SE measurements we determine how the current I close to threshold, varies as a function of carrier density n, which enables us to separate out the main current paths corresponding to monomolecular (defect-related), radiative or Auger recombination. We find that defect-related recombination forms /spl sim/55% of the threshold current at room temperature (RT). At RT, radiative recombination accounts for /spl sim/20% of I/sub th/ with the remaining /spl sim/25% being due to nonradiative Auger recombination. Theoretical calculations of the threshold carrier, density as a function of temperature were also performed, using a ten-band k /spl middot/ p Hamiltonian. Together with the experimentally determined defect-related, radiative, and Auger currents we deduce the temperature variation of the respective recombination coefficients (A, B, and C). These are compared with theoretical calculations of the coefficients and good agreement is obtained. Our results suggest that by eliminating the dominant defect-related current path, the threshold current density of these GaInNAs-GaAs-based devices would be approximately halved at RT. Such devices could then have threshold current densities comparable with the best InGaAsP/InP-based lasers with the added advantages provided by the GaAs system that are important for vertical integration.  相似文献   

18.
High-saturation current wide-bandwidth photodetectors   总被引:2,自引:0,他引:2  
This paper describes the design and performance of two wide-bandwidth photodiode structures. The partially depleted absorber photodiode utilizes an absorbing layer consisting of both depleted and undepleted In/sub 0.53/Ga/sub 0.47/As layers. These photodiodes have achieved saturation currents (bandwidths) of >430 mA (300 MHz) and 199 mA (1 GHz) for 100-/spl mu/m-diameter devices and 24 mA (48 GHz) for 100-/spl mu/m/sup 2/ area devices. Charge compensation has also been utilized in a similar, but modified In/sub 0.53/Ga/sub 0.47/As-InP unitraveling-carrier photodiode design to predistort the electric field in the depletion region in order to mitigate space charge effects. For 20-/spl mu/m-diameter photodiodes the large-signal 1-dB compression current and bandwidth were /spl sim/90 mA and 25 GHz, respectively.  相似文献   

19.
A review is presented of the fabrication, operation, and applications of rare-earth-doped GaN electroluminescent devices (ELDs). GaN:RE ELDs emit light due to impact excitation of the rare earth (RE) ions by hot carriers followed by radiative RE relaxation. By appropriately choosing the RE dopant, narrow linewidth emission can be obtained at selected wavelengths from the ultraviolet to the infrared. The deposition of GaN:RE layers is carried out by solid-source molecular beam epitaxy, and a plasma N/sub 2/ source. Growth mechanisms and optimization of the GaN layers for RE emission are discussed based on RE concentration, growth temperature, and V/III ratio. The fabrication processes and electrical models for both dc- and ac-biased devices are discussed, along with techniques for multicolor integration. Visible emission at red, green, and blue wavelengths from GaN doped with Eu, Er, and Tm has led to the development of flat-panel display (FPD) devices. The brightness characteristics of thick dielectric EL (TDEL) display devices are reviewed as a function of bias, frequency, and time. High contrast TDEL devices using a black dielectric are presented. The fabrication and operation of FPD prototypes are described. Infrared emission at 1.5 /spl mu/m from GaN:Er ELDs has been applied to optical telecommunications devices. The fabrication of GaN channel waveguides by inductively coupled plasma etching is also reviewed, along with waveguide optical characterization.  相似文献   

20.
1.3-/spl mu/m-range GaInNAsSb vertical-cavity surface-emitting lasers (VCSELs) with the doped mirror were investigated. GaInNASb active layers that include a small amount of Sb can be easily grown in a two-dimensional manner as compared with GaInNAs due to the suppression of the formation of three-dimensional growth in MBE growth. The authors obtained the lowest J/sub th/ per well (150 A/cm/sup 2//well) for the edge-emission type lasers due to the high quality of GaInNAsSb quantum wells. Using this material for the active media, the authors accomplished the first continuous wave operation of 1.3-/spl mu/m-range GaInNAsSb VCSELs. For the reduction of the threshold voltage and the differential resistance, they used the doped mirror grown by metal-organic chemical vapor deposition (MOCVD). By three-step growth, they obtained 1.3-/spl mu/m GaInNAs-based VCSELs with the low threshold current density (3.6 kA/cm/sup 2/), the low threshold voltage (1.2 V), and the low differential resistance (60 /spl Omega/) simultaneously for the first time. The back-to-back transmission was carried out up to 5 Gb/s. Further, the uniform operation of 10-ch VCSEL array was demonstrated. The maximum output power of 1 mW was obtained at 20/spl deg/C by changing the reflectivity of the front distributed Bragg reflector mirror. GaInNAsSb VCSELs were demonstrated to be very promising material for realizing the 1.3-/spl mu/m signal light sources, and the usage of the doped mirror grown by MOCVD is the best way for 1.3-/spl mu/m VCSELs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号