首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
事故条件及海洋条件下反应堆处于非稳态工况,堆芯燃料组件内热工水力行为具有瞬变及多因素耦合特性,对反应堆的安全提出更高挑战,因此有必要对燃料组件内瞬态特性进行研究。本文通过测量棒状燃料组件内压降和流量之间延迟时间开展棒束通道脉动流条件下相位差研究,对比了相位差在不同振幅、不同流动状态下的变化特性,并分析了定位格架对脉动流相位差的作用特点。另外,基于粒子图像测速(PIV)技术开展了脉动流条件下棒束通道内流场分布特性研究,对比了相同流量条件下稳态工况与瞬态工况下流场分布差异,分析了主流具备不同加速度时棒束通道内流场分布特征。实验结果表明:定位格架可减小脉动流下棒束通道内相位差;棒束通道内流场演化滞后于主流量变化。实验结果有助于揭示燃料组件在非稳态条件下瞬态特性,并为燃料组件的设计和优化奠定基础。  相似文献   

2.
事故条件及海洋条件下反应堆处于非稳态工况,堆芯燃料组件内热工水力行为具有瞬变及多因素耦合特性,对反应堆的安全提出更高挑战,因此有必要对燃料组件内瞬态特性进行研究。本文通过测量棒状燃料组件内压降和流量之间延迟时间开展棒束通道脉动流条件下相位差研究,对比了相位差在不同振幅、不同流动状态下的变化特性,并分析了定位格架对脉动流相位差的作用特点。另外,基于粒子图像测速(PIV)技术开展了脉动流条件下棒束通道内流场分布特性研究,对比了相同流量条件下稳态工况与瞬态工况下流场分布差异,分析了主流具备不同加速度时棒束通道内流场分布特征。实验结果表明:定位格架可减小脉动流下棒束通道内相位差;棒束通道内流场演化滞后于主流量变化。实验结果有助于揭示燃料组件在非稳态条件下瞬态特性,并为燃料组件的设计和优化奠定基础。  相似文献   

3.
研究流量波动下棒束通道内定位格架下游瞬时流场演变特性对于揭示海洋条件下燃料组件内流动换热机理具有重要意义。本文应用粒子图像测速(PIV)技术获得了脉动流下棒束通道内定位格架下游时空演变流场结构,分析了脉动参数(脉动周期和脉动振幅)对定位格架下游速度分布和湍流特性的影响。结果表明,脉动流下定位格架下游时均速度与定常流动下时均速度差异较小,且基本不随脉动振幅和脉动周期变化而变化;脉动流下的定位格架下游横向速度和轴向速度均方根与定常流动下的速度均方根存在明显差异,且随脉动参数变化呈现出不同的变化趋势。本文研究结果有助于揭示燃料组件在非稳态条件下瞬态特性,并为燃料组件的设计和优化奠定基础。   相似文献   

4.
由于海洋条件下反应堆处于非稳态工况,会产生倾斜、摇摆、起伏等运动,这些运动将会在棒束通道中引入额外的惯性力场,对棒束通道中的流场会有额外的影响,因此有必要对摇摆条件下的棒束通道进行研究。本文基于粒子图像测速(PIV)技术开展了摇摆条件下节径比为1.326的棒束通道内流场分布特性研究。对比了相同流量条件下稳态工况与瞬态工况下流场分布差异,分析了同一加速度时棒束通道内不同位置的流场分布特征。实验结果表明:摇摆运动对棒束通道中部的影响较小,对通道两侧的影响较大。通道两侧的速度场呈现周期性波动,波形为反相。在流量较低的情况下会出现倒流现象,但定位格架此时对上游并未造成横向速度影响。研究表明摇摆运动引起的流场变化与脉动流引起的流场变化有较大差异,其中脉动流造成的速度场变化是均匀脉动的,而摇摆引起的速度场是在通道两侧呈现反相波动。  相似文献   

5.
定位格架作为燃料组件中重要的组成部件之一,不仅在结构上固定燃料棒,而且在燃料组件内热工水力性能同样显著,特别是对工质的搅混性能直接关系到反应堆的经济性和安全性,因此有必要对燃料组件内定位格架搅混特性进行研究。本文通过粒子图像测速(PIV)技术开展了棒束通道内定位格架上下游流场的可视化研究,对比了有无格架棒束通道内流场的分布特征,定量分析了定位格架对棒束通道流场搅混的贡献。对不同流速下定位格架下游横纵速度的沿程变化特性进行研究,发现了不同流速作用下定位格架对横向、轴向速度的促进和抑制规律。另外,通过速度均方根对下游的湍流特性进行了评估。实验结果可为数值计算提供全场的数据验证,并可为定位格架设计和优化提供基础。  相似文献   

6.
在压水堆燃料组件的定位格架下游,局部扰动沿流动方向逐渐衰减,流场最终趋于稳定。光滑棒束区冷却剂的湍流流动和交混特性是影响反应堆经济性和安全性的重要因素,有必要进行深入研究。本文采用粒子图像测速(PIV)与数值模拟(CFD)相结合的方法,对3×3小规模棒束内水的流动特性进行研究,得到了一阶平均流速以及二阶湍流统计信息。结果表明,中心子通道的速度明显高于棒间隙区,但轴向均方根速度呈现出相反的变化趋势。在相邻子通道横向速度梯度的作用下,棒束内出现了大尺度的流量脉动现象,且脉动波长随雷诺数的增加而增大。此外,实验得到的湍流交混系数较压水堆采用的Castellana公式预测值偏高10%左右,这一偏差随雷诺数的增加有减小的趋势。  相似文献   

7.
棒束定位格架空泡份额分布特性实验研究   总被引:1,自引:0,他引:1  
带定位格架棒束通道内的空泡份额分布特性是反应堆热工水力特性研究的重要内容。对AFA 2G3× 3定位格架组成的棒束通道在空气 水两相流动工况下用RBI光学探针测得了通道内的横向空泡份额分布 ,分析了其横向分布的一般规律。结果表明 ,定位格架结构 ,特别是交混叶片对定位格架附近区域两相流动和空泡份额分布特性有重要影响 ,从而为进一步研究棒束定位格架加热工况下两相流动特性 ,发展新型高热工水力性能燃料组件打下基础  相似文献   

8.
为研究计算流体力学(CFD)方法预测棒束通道内流场分布的准确性,基于网格敏感性分析所确定的网格方案,采用标准k-ε模型(SKE)、可实现k-ε模型(RKE)、标准k-ω模型(SKW)和剪切应力传输模型(SST模型)对单相棒束流动进行模拟,并将横向速度与轴向速度与试验结果进行量化比较。结果表明:4种湍流模型均能较好地预测棒束通道内的流场分布,其中SKE与RKE的在横向速度预测上相对偏差较小,为19.6%;对于近格架区域的横向流场分析,SKE模拟较优,反之RKE模拟较优;对于轴向速度的预测,SKE的相对偏差最小为4.9%;4种湍流模型均低估均方根(RMS)速度,但能够预测棒束通道内RMS速度的分布规律,近格架区域采用RKE,反之SST较优。本文的计算结果可为单相棒束流动CFD分析的最佳实践导则建立提供参考。   相似文献   

9.
燃料棒束作为压水堆燃料组件的组成部分,其热工和结构特性直接关系到反应堆的安全。本文利用ANSYS WORKBENCH软件分析了冷却剂在5×5含定位格架燃料棒束通道内流动的分布,采用冷却剂与燃料棒束多场耦合的方式研究了燃料棒束的流动传热特性和结构形变特性。结果表明:定位格架扰动冷却剂形成横向二次流并在下游棒束间形成绕流;多场耦合条件下二次流峰值速度和平均速度均小于单流场的;二次流与燃料棒的热应力使棒束发生形变,功率和流动分布的不均匀导致形变在轴向和径向的不均匀;相较于无格架情况,定位格架的存在使冷却剂的搅混流动更加明显,冷却剂对燃料棒冲击增大;在有、无定位格架两种情况下棒束形变均很小,可保持原本结构的稳定。  相似文献   

10.
燃料棒束作为压水堆燃料组件的组成部分,其热工和结构特性直接关系到反应堆的安全。本文利用ANSYS WORKBENCH软件分析了冷却剂在5×5含定位格架燃料棒束通道内流动的分布,采用冷却剂与燃料棒束多场耦合的方式研究了燃料棒束的流动传热特性和结构形变特性。结果表明:定位格架扰动冷却剂形成横向二次流并在下游棒束间形成绕流;多场耦合条件下二次流峰值速度和平均速度均小于单流场的;二次流与燃料棒的热应力使棒束发生形变,功率和流动分布的不均匀导致形变在轴向和径向的不均匀;相较于无格架情况,定位格架的存在使冷却剂的搅混流动更加明显,冷却剂对燃料棒冲击增大;在有、无定位格架两种情况下棒束形变均很小,可保持原本结构的稳定。  相似文献   

11.
堆芯是核动力系统的核心部件,其完整性是反应堆安全运行的重要前提。传统核反应堆堆芯热工水力分析方法无法满足未来先进核动力系统的高精度模拟需求。本文依托开源CFD平台OpenFOAM,针对压水堆堆芯棒束结构特点建立了冷却剂流动换热模型、燃料棒导热模型和耦合换热模型,开发了一套基于有限体积法的压水堆全堆芯通道级热工水力特性分析程序CorTAF。选取GE3×3、Weiss和PNL2×6燃料组件流动换热实验开展模型验证,计算结果与实验数据基本符合,表明该程序适用于棒束燃料组件内冷却剂流动换热特性预测。本工作对压水堆堆芯安全分析工具开发具有参考和借鉴意义。  相似文献   

12.
At the downstream of the spacer grid in a PWR fuel assembly, local disturbance damps out along the flow direction and the flow returns to stable eventually. The turbulent flow and mixing behavior of the coolant are key factors affecting the economy and safety of a nuclear reactor, and need in-depth investigations. In the present paper, the turbulent flow of water in a 3×3 rod bundle was studied using PIV (particle image velocimetry) and CFD. First-order mean velocity and second-order turbulent statistics were obtained. It is found that the velocity in the central subchannel is higher than that in the gap region, but the streamwise root-mean-square velocity behaves inversely. Large-scale flow pulsation induced by the strong streamwise velocity gradient between adjacent subchannels, is observed in the rod bundle, and the wave length increases with Reynolds numbers. In addition, the measured turbulent mixing coefficient is 10% higher than that predicted by the Castellana correlation for PWRs, but this deviation reduces with the increase of Reynolds numbers.  相似文献   

13.
在子通道雷诺数为6 600、13 200、26 400和39 600下,使用粒子成像测速仪对5×5棒束分流型交混翼定位格架下游横向和纵向流动进行测量。平均速度和湍流脉动速度均方根的实验结果最大不确定度低于1%的主流平均速度。格架下游二次流结构经历了交混翼脱落涡结构耗散、剪切产生双涡结构、双涡结构向单涡结构的转变及单涡结构沿程衰减过程,横向平均速度和湍流脉动速度均方根沿程变化均受涡结构演进影响。格架近场湍流统计量迅速衰减;格架远场湍流统计量缓慢衰减,流动趋于光棒束充分发展流动。横向流动受雷诺数效应和格架交混效应共同影响。  相似文献   

14.
15.
This paper describes results of an experimental program to reduce uncertainties associated with the thermal-hydraulic design and analysis of LMFBR blanket assemblies. These assemblies differ significantly from fuel assemblies in design detail and operating conditions. In blanket assemblies, heat transfer occurs over a wide range of complex operating conditions. The range and complexity of conditions are the result of flux and power gradients which are an inherent feature of the blanket region and the power generation level in an assembly which can vary from 20 kW to 2 MW. To provide effective cooling of all assemblies and economical operation, coolant is metered to groups of assemblies in proportion to their ultimate power level. As a result, the assembly flow can be in the laminar, transition or turbulent range. Because of the wide range of heat generation rates and the range of coolant flow velocities, heat transfer from rods to coolant may take place in the forced, natural or mixed convection mode. Under low flow conditions, buoyancy affects the flow pattern in the bundle, and thus, alters the temperature distribution. The complexities are further compounded since, in addition to temperature gradients within an assembly, there are also significant temperature differences between adjacent assemblies. This results in heat transfer by conduction between adjacent assemblies, which tends to further distort flow and temperature patterns.Since these effects cannot be accurately predicted analytically, full-size radial blanket assembly heat transfer tests are being conducted using electrically heated fuel rod simulators in flowing sodium. A 61-rod electrically heated radial blanket assembly mockup of prototypic dimensions was designed, constructed and installed in a 200 gpm (45 m3/hr) sodium test loop.Heat transfer tests are being conducted over a wide range of power and sodium flow rates with this full-scale, vertical, electrical-resistance-heated rod bundle. The rod bundle is extensively instrumented by thermocouples located at six distinct elevations in the wire wrap and inside the heater cladding. Tests were conducted covering the flow range from fully turbulent to fully laminar with approximately constant power-to-flow ratio. The power input patterns included across bundle gradients of 2.8 to 1 and 2.0 to 1 maximum to minimum, uniform power input to all rods and a dished distribution with low power in the central row and high power in the two rows of rods adjacent to the duct walls.The test program provided experimentally measured axial and transverse temperature profiles for the test model over a range of anticipated plant operating conditions. The data were used to (a) determine the effect of Reynolds Number, power gradients and power-to-flow ratio on transverse and axial temperature profiles and particularly on peak and peripheral channel temperatures; (b) determine the effect of inter-assembly heat transfer on peak temperatures and temperature distributions; and (c) determine the effect of buoyancy on temperature profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号