首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
张业星  陈敏  潘秋羽 《计算机工程》2022,48(7):264-269+299
针对直接利用多尺度融合特征图进行目标检测时鲁棒性较差的问题,提出一种对图像全局信息进行多维建模的检测方法。采用多阶段的特征复用和特征融合减少特征间相关性损失,设计广度通道建模分支(BCMB)与深度通道建模分支(DCMB)弥补因感受野变化造成的图像空间信息不足,并丰富图像中各个目标间的上下文信息。通过BCMB建立宽高方向的二维通道矩阵,对多层级的感受野进行建模,进而丰富模型对图像的空间感知,完成目标定位。使用DCMB建立深度方向的一维通道向量,提炼图像的全局特征,丰富模型对图像的上下文描述,完成目标分类。将2个分支生成的通道图与输入特征进行加权融合,增强图像通道表达力,使输出的特征对目标的位置和类别信息更敏感。在PASCAL VOC 2007测试数据集上的实验结果表明,该方法的mAP值为85.8%,与未使用通道建模的Baseline方法相比,最高可提升3.2个百分点。  相似文献   

2.
针对现有目标检测算法在检测时易受到图像尺度变化、目标间遮挡或截断等因素影响的问题,对卷积神经网络(convolutional neural network,CNN)中不同层次的特征进行了研究,提出了一种融合深度网络卷积特征的目标检测算法。算法采用多阶段的特征复用和特征融合减少特征间相关性的损失,最终在PASCAL VOC 2007测试数据集上达到了84.21%的mAP (mean average precison,平均精度均值)值;与未使用特征融合方法以及使用传统特征融合的方法相比,提出的方法分别提高了4.41%和2.71%。  相似文献   

3.
4.
针对当前基于深度学习的目标检测算法采取的特征图融合方式存在缺陷,算法普遍不能很好地应对尺度变化等问题,提出一种跨深度卷积特征增强的目标检测算法CDC-YOLO。对YOLOv3算法进行改进,针对多尺度预测层各自的特点采用与之适应的特征增强模块,采用多通道的跨深度的卷积核并结合空洞卷积并行地提取特征,最终级联起来。该模块能充分利用多尺度多深度特征,形成统一的多尺度特征表达。在VOC2007test上的实验结果表明,提出算法的mAP (均值平均精度)高达82.33%,比原始YOLOv3提升了约2%,且对尺度变化大的物体鲁棒性更强。  相似文献   

5.
6.
伪装目标检测(COD)旨在检测隐藏在复杂环境中的目标。现有COD算法在结合多层次特征时,忽略了特征的表达和融合方式对检测性能的影响。为此,提出一种基于递进式特征增强聚合的COD算法。首先,通过主干网络提取多级特征;然后,为了提高特征的表达能力,使用由特征增强模块(FEM)构成的增强网络对多层次特征进行增强;最后,在聚合网络中设计邻近聚合模块(AAM)实现相邻特征之间的信息融合,以突显伪装目标区域的特征,并提出新的递进式聚合策略(PAS)通过渐进的方式聚合邻近特征,从而在实现多层特征有效融合的同时抑制噪声。在3个公开数据集上的实验表明,所提算法相较于12种最先进的算法在4个客观评价指标上均取得最优表现,尤其是在COD10K数据集上所提算法的加权的F测评法和平均绝对误差(MAE)分别达到了0.809和0.037。由此可见,所提算法在COD任务上拥有较优的性能。  相似文献   

7.
严春满  王铖 《控制与决策》2023,38(1):239-247
针对合成孔径雷达(SAR)图像中小目标舰船检测困难的问题,提出基于单次多盒检测器的一种特征增强小目标检测算法.首先提出一种混合多特征提取模块,采用并行的普通卷积、不同空洞率的空洞卷积以及非对称卷积形成与舰船目标相匹配的感受野,以提高浅层网络对复杂形状小目标的特征提取能力;然后提出一种邻近多特征融合模块,将特征信息进行更科学的深层次融合,对小目标特征进一步增强;最后根据SAR图像单通道的特性,缩减特征提取网络VGG-16的冗余特征通道.在公开的SSDD数据集上与其他检测算法进行对比实验,实验结果表明,所提出方法将平均精确度提升至93.44%,检测速度提升至41.8FPS,参数量减少为18.74M,综合性能优于其他检测算法.  相似文献   

8.
9.
随着深度学习技术的发展以及卷积神经网络在众多计算机视觉任务中的突出表现,基于卷积神经网络的深度显著性检测方法成为显著性检测领域的主流方法.但是,卷积神经网络受卷积核尺寸的限制,在网络底层只能在较小范围内提取特征,不能很好地检测区域内不显著但全局显著的对象;其次,卷积神经网络通过堆叠卷积层的方式可获得图像的全局信息,但在...  相似文献   

10.
目的 基于清晰图像训练的深度神经网络检测模型因为成像差异导致的域偏移问题使其难以直接泛化到水下场景。为了有效解决清晰图像和水下图像的特征偏移问题,提出一种即插即用的特征增强模块(feature de-drifting module Unet, FDM-Unet)。方法 首先提出一种基于成像模型的水下图像合成方法,从真实水下图像中估计色偏颜色和亮度,从清晰图像估计得到场景深度信息,根据改进的光照散射模型将清晰图像合成为具有真实感的水下图像。然后,借鉴U-Net结构,设计了一个轻量的特征增强模块FDM-Unet。在清晰图像和对应的合成水下图像对上,采用常见的清晰图像上预训练的检测器,提取它们对应的浅层特征,将水下图像对应的退化浅层特征输入FDM-Unet进行增强,并将增强之后的特征与清晰图像对应的特征计算均方误差(mean-square error, MSE)损失,从而监督FDM-Unet进行训练。最后,将训练好的FDM-Unet直接插入上述预训练的检测器的浅层位置,不需要对网络进行重新训练或微调,即可以直接处理水下图像目标检测。结果 实验结果表明,FDM-Unet在PASCAL VOC ...  相似文献   

11.
现有依赖CNN的目标检测算法常采用特征融合的建模方式来丰富特征表达,虽然该方法一定程度上能有效改善多尺度目标检测,但是在针对复杂场景进行检测时却没有显著的提升。这主要受限于三个问题的影响:长路径特征融合造成的特征间相关性损失;仅设计了单方向的融合连接,忽略了反方向的语义信息弥补;忽略了有效感受野(effective receptive field,ERF)在多尺度检测中的重要性。针对这三点分别设计了二次融合结构(double fusion structure,DFS)、多分支融合模块(multi branch fusion module,MBFM)和感受野增强模块(receptive field enhance module,RFEM)。该方法利用DFS缩短特征层级间的相对路径,然后通过MBFM来同时弥补上层和下层的语义信息缺失,并使用RFEM建模特征通道,增大ERF区域。最终模型在PASCAL VOC 2007测试数据集上达到了85.4%的平均精度均值(mean average precision,mAP),与依赖传统建模方式的检测算法相比,提出的方法提高了2.6%。  相似文献   

12.
李健伟  曲长文  彭书娟 《控制与决策》2019,34(10):2191-2197
针对合成孔径雷达(SAR)图像中舰船目标稀疏的特点,提出一种基于级联卷积神经网络(CNN)的SAR图像舰船目标检测方法.将候选区域提取方法BING与目标检测方法Fast R-CNN相结合,并采用级联CNN设计,可同时兼顾舰船检测的准确率和速度.首先,针对SAR图像中相干斑噪声影响梯度检测的问题,在原有梯度算子的基础上增加平滑算子,并对图像尺寸个数和候选框个数进行适应性改进,使其提取到的候选窗口更快更准;然后,设计级联结构的Fast R-CNN检测框架,前端简单的CNN负责排除明显的非目标区域,后端复杂的CNN对高概率候选区域进行分类和位置回归,整个结构可以保证快速准确地对舰船这种稀疏目标进行检测;最后,设计一种联合优化方法对多任务的目标函数进行优化,使其更快更好地收敛.在SAR图像舰船检测数据集SSDD上的实验结果显示,所提出的方法相比于原始Fast R-CNN和Faster R-CNN检测方法,检测精度从65.2%和70.1%提高到73.5%,每张图像的处理时间从2235ms和198ms下降到113ms.  相似文献   

13.
针对传统目标探测方法多应用于低定位精度系统的情况,提出一种目标定位探测方法,以增强目标探测系统的定位精确度。确定候选框初始集;计算给定搜索区域的每行每列元素的条件概率,这些概率提供目标边界框位置的有用信息,根据概率情况,分别建立内外模型、边界模型和混合模型以返回感兴趣目标的边界框,实现定位;结合定位模型,利用卷积神经网络对目标进行训练探测。通过对PASCAL VOC和COCO数据集不同IoU阈值情况的实验,结果表明,与传统的方法相比,提出方法具有更高的探测准确率,可应用于高级目标探测系统。同时,利用滑动窗的方法确定候选框初始集,说明提出方法完全独立于传统的边界框回归方法。既简化了初始集的确定过程,同时保持较高的探测准确率。  相似文献   

14.
针对复杂背景下小目标特征经多次卷积被背景噪声淹没导致的检测精度低的问题,提出一种增强弱特征表达的一阶段轻量级小目标检测算法SA-YOLO.首先,用改进的ShuffleNetv2网络构建骨干网络,通过嵌入SE注意力模块和Inception结构,提升网络在复杂背景下的特征提取能力,有效地抑制背景噪声,充分提取弱特征;其次,在颈部网络,采用新的特征融合模块,以含有弱特征较多的低层级特征块的空间位置信息对高层级特征进行权重调整,提高不同层级的特征融合利用率,减少小目标的特征损失;最后,在头部网络,用解耦的检测头替换原YOLO耦合的检测头,解耦分类任务和回归任务,提高弱特征的解码能力,增强小目标检测的性能.在公开数据集COCO2017上进行实验,结果表明,SA-YOLO参数量仅有1.14M,小目标平均检测召回率$\rm AR_S$达到31.6%.同时,将所提出算法与近几年主流算法进行对比,结果表明,所提出算法在小目标检测方面具有较强的竞争力.  相似文献   

15.
作为一个多任务的学习过程,目标检测相较于分类网络需要更好的特征.基于多尺度特征对不同尺度的目标进行预测的检测器性能已经大大超过了基于单一尺度特征的检测器.同时,特征金字塔结构被用于构建所有尺度的高级语义特征图,从而进一步提高了检测器的性能.但是,这样的特征图没有充分考虑到上下文信息对语义的补充作用.在SSD基准网络的基...  相似文献   

16.
针对Pelee轻量级目标检测网络中参数量和计算量较多、检测精度较差等缺陷,提出了基于分组卷积和特征图级联的轻量级目标检测网络GCPelee。首先,利用分组卷积替换检测模块中的标准卷积形式以减少模型参数量和计算量;其次,在检测模块上应用特征图级联,将感受野较大的特征图包含的信息传递至感受野较小的特征图,提升后者的感受野大小。实验结果表明,优化后的GCPelee模型参数量和计算量均得到减少,检测精度得到了提升。  相似文献   

17.
目的 获取场景图像中的文本信息对理解场景内容具有重要意义,而文本检测是文本识别、理解的基础。为了解决场景文本识别中文字定位不准确的问题,本文提出了一种高效的任意形状文本检测器:非局部像素聚合网络。方法 该方法使用特征金字塔增强模块和特征融合模块进行轻量级特征提取,保证了速度优势;同时引入非局部操作以增强骨干网络的特征提取能力,使其检测准确性得以提高。非局部操作是一种注意力机制,能捕捉到文本像素之间的内在关系。此外,本文设计了一种特征向量融合模块,用于融合不同尺度的特征图,使尺度多变的场景文本实例的特征表达得到增强。结果 本文方法在3个场景文本数据集上与其他方法进行了比较,在速度和准确度上均表现突出。在ICDAR(International Conference on Document Analysis and Recognition) 2015数据集上,本文方法比最优方法的F值提高了0.9%,检测速度达到了23.1 帧/s;在CTW(Curve Text in the Wild) 1500数据集上,本文方法比最优方法的F值提高了1.2%,检测速度达到了71.8 帧/s;在Total-Text数据集上,本文方法比最优方法的F值提高了1.3%,检测速度达到了34.3 帧/s,远远超出其他方法。结论 本文方法兼顾了准确性和实时性,在准确度和速度上均达到较高水平。  相似文献   

18.
Past work on object detection has emphasized the issues of feature extraction and classification, however, relatively less attention has been given to the critical issue of feature selection. The main trend in feature extraction has been representing the data in a lower dimensional space, for example, using principal component analysis (PCA). Without using an effective scheme to select an appropriate set of features in this space, however, these methods rely mostly on powerful classification algorithms to deal with redundant and irrelevant features. In this paper, we argue that feature selection is an important problem in object detection and demonstrate that genetic algorithms (GAs) provide a simple, general, and powerful framework for selecting good subsets of features, leading to improved detection rates. As a case study, we have considered PCA for feature extraction and support vector machines (SVMs) for classification. The goal is searching the PCA space using GAs to select a subset of eigenvectors encoding important information about the target concept of interest. This is in contrast to traditional methods selecting some percentage of the top eigenvectors to represent the target concept, independently of the classification task. We have tested the proposed framework on two challenging applications: vehicle detection and face detection. Our experimental results illustrate significant performance improvements in both cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号