共查询到20条相似文献,搜索用时 46 毫秒
1.
针对直接利用多尺度融合特征图进行目标检测时鲁棒性较差的问题,提出一种对图像全局信息进行多维建模的检测方法。采用多阶段的特征复用和特征融合减少特征间相关性损失,设计广度通道建模分支(BCMB)与深度通道建模分支(DCMB)弥补因感受野变化造成的图像空间信息不足,并丰富图像中各个目标间的上下文信息。通过BCMB建立宽高方向的二维通道矩阵,对多层级的感受野进行建模,进而丰富模型对图像的空间感知,完成目标定位。使用DCMB建立深度方向的一维通道向量,提炼图像的全局特征,丰富模型对图像的上下文描述,完成目标分类。将2个分支生成的通道图与输入特征进行加权融合,增强图像通道表达力,使输出的特征对目标的位置和类别信息更敏感。在PASCAL VOC 2007测试数据集上的实验结果表明,该方法的mAP值为85.8%,与未使用通道建模的Baseline方法相比,最高可提升3.2个百分点。 相似文献
2.
针对现有目标检测算法在检测时易受到图像尺度变化、目标间遮挡或截断等因素影响的问题,对卷积神经网络(convolutional neural network,CNN)中不同层次的特征进行了研究,提出了一种融合深度网络卷积特征的目标检测算法。算法采用多阶段的特征复用和特征融合减少特征间相关性的损失,最终在PASCAL VOC 2007测试数据集上m AP(mean average precison,平均精度均值)值达到了84.21%;与未使用特征融合方法以及使用传统特征融合的方法相比,提出的方法将m AP分别提高了4.41%和2.71%。 相似文献
3.
针对当前基于深度学习的目标检测算法采取的特征图融合方式存在缺陷,算法普遍不能很好地应对尺度变化等问题,提出一种跨深度卷积特征增强的目标检测算法CDC-YOLO.对YOLOv3算法进行改进,针对多尺度预测层各自的特点采用与之适应的特征增强模块,采用多通道的跨深度的卷积核并结合空洞卷积并行地提取特征,最终级联起来.该模块能... 相似文献
4.
针对复杂场景下,小尺度、模糊和遮挡人脸检测精度低的问题,提出一种基于增强并行级联卷积神经网络的人脸检测方法.在主网络SSD的多层特征图上,通过融合前后层特征图增强原始特征图的辨识度.将多个增强特征图组合成附加增强网络,与主网络并行设置,加快对小尺度,模糊和遮挡人脸的检测速度.在训练阶段为主网络和附加增强网络设置两种基于... 相似文献
6.
伪装目标检测(COD)旨在检测隐藏在复杂环境中的目标。现有COD算法在结合多层次特征时,忽略了特征的表达和融合方式对检测性能的影响。为此,提出一种基于递进式特征增强聚合的COD算法。首先,通过主干网络提取多级特征;然后,为了提高特征的表达能力,使用由特征增强模块(FEM)构成的增强网络对多层次特征进行增强;最后,在聚合网络中设计邻近聚合模块(AAM)实现相邻特征之间的信息融合,以突显伪装目标区域的特征,并提出新的递进式聚合策略(PAS)通过渐进的方式聚合邻近特征,从而在实现多层特征有效融合的同时抑制噪声。在3个公开数据集上的实验表明,所提算法相较于12种最先进的算法在4个客观评价指标上均取得最优表现,尤其是在COD10K数据集上所提算法的加权的F测评法和平均绝对误差(MAE)分别达到了0.809和0.037。由此可见,所提算法在COD任务上拥有较优的性能。 相似文献
7.
微小目标的纹理模糊、包含特征少,是目标检测领域的难点.针对小目标检测提出一种新的上下文增强模块(context augmentation module, CAM)和特征提纯模块(feature refinement module, FRM)相结合的特征金字塔复合结构. 利用多尺度空洞卷积的特征融合,补充网络中的上下文信息;引入通道和空间的特征提纯机制来抑制多尺度特征融合后的冲突信息,防止小目标淹没在冲突信息中;同时,引入复制—缩小—粘贴(copy-reduce-paste)的数据增强方法提高小目标的占比,使训练时小目标对损失值的贡献更大,训练更加平衡.由实验结果可知,所提出的算法在VOC数据集上目标检测的平均精度均值(Mean Average Precision, mAP)达到了83.6%(交并比为0.5);对小目标检测的AP值达到了16.9%(交并比为0.5~0.95),比YOLOV4,CenterNet,RefineDet的分别提高3.9%,7.7%和5.3%.在TinyPerson数据集上小目标检测的AP值为55.1%,比YOLOV5,DSFD的分别提高0.8%和 3.5%. 相似文献
9.
针对合成孔径雷达(SAR)图像中小目标舰船检测困难的问题,提出基于单次多盒检测器的一种特征增强小目标检测算法.首先提出一种混合多特征提取模块,采用并行的普通卷积、不同空洞率的空洞卷积以及非对称卷积形成与舰船目标相匹配的感受野,以提高浅层网络对复杂形状小目标的特征提取能力;然后提出一种邻近多特征融合模块,将特征信息进行更科学的深层次融合,对小目标特征进一步增强;最后根据SAR图像单通道的特性,缩减特征提取网络VGG-16的冗余特征通道.在公开的SSDD数据集上与其他检测算法进行对比实验,实验结果表明,所提出方法将平均精确度提升至93.44%,检测速度提升至41.8FPS,参数量减少为18.74M,综合性能优于其他检测算法. 相似文献
10.
目的 基于清晰图像训练的深度神经网络检测模型因为成像差异导致的域偏移问题使其难以直接泛化到水下场景。为了有效解决清晰图像和水下图像的特征偏移问题,提出一种即插即用的特征增强模块(feature de-drifting module Unet, FDM-Unet)。方法 首先提出一种基于成像模型的水下图像合成方法,从真实水下图像中估计色偏颜色和亮度,从清晰图像估计得到场景深度信息,根据改进的光照散射模型将清晰图像合成为具有真实感的水下图像。然后,借鉴U-Net结构,设计了一个轻量的特征增强模块FDM-Unet。在清晰图像和对应的合成水下图像对上,采用常见的清晰图像上预训练的检测器,提取它们对应的浅层特征,将水下图像对应的退化浅层特征输入FDM-Unet进行增强,并将增强之后的特征与清晰图像对应的特征计算均方误差(mean-square error, MSE)损失,从而监督FDM-Unet进行训练。最后,将训练好的FDM-Unet直接插入上述预训练的检测器的浅层位置,不需要对网络进行重新训练或微调,即可以直接处理水下图像目标检测。结果 实验结果表明,FDM-Unet在PASCAL VOC ... 相似文献
11.
对路面图像块预标记,根据预标记结果对路面图像进行强度归一化预处理,在保留裂缝信息的同时,减少背景光照不均的影响.将预处理后的路面图像输入卷积神经网络(CNN)模型实现路面图像裂缝的检测.由于路面裂缝分布复杂,在训练网络时,使用不同尺度和不同角度的路面图像进行模型训练,使得网络能够检测不同裂缝形状.实验结果显示:裂缝检测结果较好. 相似文献
12.
以河北省石家庄市2003年和2004年的专题制图仪(TM)遥感影像为例,针对各波段光谱特征,提出了一种基于地物特征增强的变化检测方法.在两期影像上对各类地物采样并计算样本在不同波段的均值、标准差等特征量,以确定波段组合运算的加权系数,计算特征增强图像,实现两期影像中所指定地物类型的特征增强;计算两期特征增强影像的差异影像;使用最小误差分割法获取变化检测结果.通过对比实验可知:方法提取变化区域总体精度达到90%,相对于传统的基于主成分分析(PCA)的变化检测方法,具有较高的检测精度,较好的可行性与适应性. 相似文献
13.
Past work on object detection has emphasized the issues of feature extraction and classification, however, relatively less attention has been given to the critical issue of feature selection. The main trend in feature extraction has been representing the data in a lower dimensional space, for example, using principal component analysis (PCA). Without using an effective scheme to select an appropriate set of features in this space, however, these methods rely mostly on powerful classification algorithms to deal with redundant and irrelevant features. In this paper, we argue that feature selection is an important problem in object detection and demonstrate that genetic algorithms (GAs) provide a simple, general, and powerful framework for selecting good subsets of features, leading to improved detection rates. As a case study, we have considered PCA for feature extraction and support vector machines (SVMs) for classification. The goal is searching the PCA space using GAs to select a subset of eigenvectors encoding important information about the target concept of interest. This is in contrast to traditional methods selecting some percentage of the top eigenvectors to represent the target concept, independently of the classification task. We have tested the proposed framework on two challenging applications: vehicle detection and face detection. Our experimental results illustrate significant performance improvements in both cases. 相似文献
14.
针对实时行人检测中AdaBoost级联分类算法存在的问题,改进AdaBoost级联分类器的训练算法,提出了Ada-Boost-SVM级联分类算法,它结合了AdaBoost和SVM两种算法的优点.对自定义样本集和PET图像库进行行人检测实验,实验中选择固定大小的窗口作为候选区域并利用类Haar矩形特征进行特征提取,通过AdaBoost-SVM级联分类器进行分类.实验结果表明AdaBoost-SVM级联分类器的分类器准确率达到99.5%,误报率低于0.05%,优于AdaBoost级联分类器,训练时间要远远小于SVM分类器. 相似文献
15.
针对实际场景中桥梁裂缝检测精度不高的问题,提出一种基于卷积神经网络与条件随机场的裂缝检测算法。使用特征提取网络对原图进行处理,提取适合裂缝检测的特征;通过区域推荐网络对原始图片中存在裂缝的候选区域进行初步定位;将得到的候选区域作为分类与回归网络的输入,利用条件随机场对该区域的空间特性进行建模,综合判定该区域是否属于裂缝。实验结果表明,该算法相较于常用的Faster-RCNN和滑窗扫描法在查准率上分别提高了9.01%和9.31%,在查全率上分别提高了7.72%和10.45%,精度均值分别提高了0.091和0.175。 相似文献
16.
Multimedia Tools and Applications - Different from action recognition which just needs to assign correct labels to video clips, action detection aims to recognize and localize the action from an... 相似文献
17.
As the basis of mid-level and high-level vision tasks, edge detection has great significance in the field of computer vision. Edge detection methods based on deep learning usually adopt the structure of the encoding-decoding network, among which the deep convolutional neural network is generally adopted in the encoding network, and the decoding network is designed by researchers. In the design of the encoding-decoding network, researchers pay more attention to the design of the decoding network and ignore the influence of the encoding network, which makes the existing edge detection methods have the problems of weak feature extraction ability and insufficient edge information extraction. To improve the existing methods, this work combines the information transmission mechanism of the retina/lateral geniculate nucleus with an edge detection network based on convolutional neural network and proposes a bionic feature enhancement network. It consists of a pre-enhanced network, an encoding network, and a decoding network. By simulating the information transfer mechanism of the retina/lateral geniculate nucleus, we designed the pre-enhanced network to enhance the ability of the encoding network to extract details and local features. Based on the hierarchical structure of the visual pathway and the integrated feature function of the inferior temporal (IT) cortex, we designed a novel feature fusion network as a decoding network. In a feature fusion network, a down-sampling enhancement module is introduced to boost the feature integration ability of the decoding network. Experimental results demonstrate that we achieve state-of-the-art performance on several available datasets. 相似文献
18.
Multimedia Tools and Applications - A two-branch convolutional neural network (CNN) architecture for feature extraction in person re-identification (re-ID) based on video surveillance is proposed.... 相似文献
19.
Applied Intelligence - Thermal infrared sensors have unique advantages under the conditions of insufficient illumination, complex scenarios, or occluded appearances. RGB-T salient object detection... 相似文献
20.
针对动态图像序列中背景成像过程因各种因素而变化存在复杂性,提出了一种基于细胞神经网络(CNN)和马尔可夫随机场(MRF)的目标分割方法.首先根据细胞神经网络与马尔可夫随机场能量函数的相似性,将马尔可夫随机场的最大后验概率模型映射到细胞神经网络近邻系统模型中.然后建立图像每一像素点的邻域系统模型,并且构造相应的能量函数.为使能量函数达到快速收敛,再利用模拟退火算法实现能量函数的最小值,以达到对运动目标的提取.由于CNN是由局部互连的细胞组成,因此易于用VLSI实现.实验的结果表明,该方法能够有效地抑制图像的噪声,对于运动目标的提取有较好的分割效果. 相似文献
|