首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对海上某高温高压低渗气田修井作业过程中修井液易对储层造成污染伤害以及对井下管柱易产生严重腐蚀等问题,室内以可溶性复合盐加重材料HGBZ为基础,并结合抗高温缓蚀剂HSJ-S、耐温抗盐防水剂HAD-2以及抗高温键合剂HJH-2等主要处理剂,研制了一套适合海上高温高压低渗气田的双保型高温高密度修井液体系,并对其综合性能进行了评价。结果表明:该修井液体系的基本性能良好,密度在1.03~1.80 g/cm3之间可调;修井液具有较好的防腐蚀效果,对井下设备钢材的腐蚀速率低于0.076 mm/a;修井液对目标气田储层段黏土矿物的防膨效果较好,防膨率可以达到95%以上;修井液与储层段地层水具有较好的配伍性,不会产生结晶沉淀等;修井液体系可以有效降低天然岩心的自吸水量,并且经过修井液污染后的天然岩心在长时间高温条件下的渗透率恢复值可以达到90%以上,具有良好的储层保护效果。X井使用双保型高温高密度修井液体系修井过程顺利,未发生井下复杂事故,修井后产能恢复率较高,说明研究的双保型高温高密度修井液体系能够满足海上高温高压低渗气田的修井作业要求。   相似文献   

2.
渤海油田多高渗储层,修井过程中易发生修井液大量漏失,修井液进入地层后若与储层配伍性差,修井液中的聚合物难于降解,常常引起储层伤害,导致修井后产量降低。因此,要求修井液应具备强的封堵能力和易降解特性。考虑修井作业时间对降解速度的要求,从热降解和生物酶降解角度出发,研制出了双降解修井液体系。评价结果表明,该体系封堵能力强,热降解性和生物降解性好,具有较好的储层保护效果。  相似文献   

3.
涠洲12-1油田中块低压储层保护研究   总被引:1,自引:0,他引:1  
通过分析和评价涠洲12-1油田中块原修井液对储层产生损害的影响因素,确定了防止储层损害的有效措施和方法,即通过在修井液中加入表面活性剂CZZ和WPD来降低水锁产生的损害,并评价了2种表面活性剂降低油/水界面张力的能力、配伍性、抗温性以及乳化性。同时对易漏失的低压储层开展了改进型修井液技术研究,包括暂堵剂的优选、性能评价、储层保护研究、解堵试验评价、与地层流体配伍性评价和现场施工工艺研究,并提出了解除损害的有效方法。  相似文献   

4.
海上油田X-1井砂岩储层具有高温、异常高压和低渗等特征,且储层岩样溶蚀孔发育,含有一定的粒间缝被黏土矿物充填,黏土矿物较多,易造成水敏、速敏。针对上述问题研制出一种高温低渗敏感性储层解堵液体系。实验表明,在170℃的条件下,解堵液体系对钢片的平均腐蚀速率为62.880 g/m2·h,达到行业一级标准,且该体系具有较低的表面张力,鲜酸和残酸表面张力均低于24.0 mN/m。解堵液体系有较好的稳定铁离子能力,稳定铁量高达263 mg/mL。解堵液体系具有较好的防膨效果,终膨胀率降低值为32.19%,能有效控制黏土膨胀,抑制水敏伤害。岩心中注入解堵液体系后,渗透率呈明显的上升趋势,由于该体系对黏土矿物和基质的溶蚀率均较大,且不宜引起出砂堵塞孔喉,渗透率增加倍比约为3.5倍,是较为理想的适用于高温低渗储层的解堵液体系。现场应用表明,解堵液基本解除井筒附近堵塞,对比酸化前后日产气量,本次酸化对该井起到了很好的解堵效果。   相似文献   

5.
针对涠洲油田群强水敏储层投产后达不到配产要求、采液指数很低、表皮系数较大等问题,选取典型井WZ11-1N-A12Sa作研究对象,找出了储层损害原因,研制了水基乳液复合解堵液HJD-S并对其进行评价,得出该解堵液对油基泥浆滤饼有较好的分散、清洗能力,防破乳能力强,与地层流体、岩石的配伍性好,解堵液对钻完井液污染后的岩心具有较好的解除效果,渗透率恢复值大于100%。现场应用表明,解堵液能有效解除该井涠洲组的堵塞,实现日增油208m3,2012年增油量达4.52×10^4m^3。  相似文献   

6.
为了实现修井液在无固相、不形成致密泥饼前提下的低滤失性能,有效预防或减轻修井液对低孔、低渗、喉道细小及裂缝较发育储层造成的液锁损害,达到修井后流体产出能力的最大化.研制出了XJPS无固相、多功能弱凝胶修井液体系。该体系具有流变参数适宜、低滤失(〈8mL)、渗透率恢复值高(〉85%)、返排效果好等特点,Q3气井应用后产气、产油量降低幅度和含水量上升幅度均较小,明显减轻了因修井液漏失到储层造成的液锁损害和产能损失,提高了储层保护效果和修井效率。  相似文献   

7.
��ѹ�������˺��޾�Һ��Ӧ���о�   总被引:4,自引:1,他引:3  
修井是一项为恢复油气井的正常生产所进行的解除故障、完善井眼条件的工作。如果修井液与储层流体和储层矿物不配伍以及滤失量过大就会造成储层损害。文章以卫126井为例,对低压气井低伤害修井液的优选作了详细研究。针对地层高温、高渗透率、强水敏和强盐敏 的特征,把修井液盐度提高到12.5%,通过抗温抗盐有机降失水剂的滤失筛选实验、岩心伤害实验和修井液滤液表面张力评价实验,研制出性能优良的修井液配方TC2-5,并成功地应用于卫126井的修井作业,取得了“能压住井、压而不死、低伤害”的应用效果。  相似文献   

8.
范振华  魏剑飞  张珂  王明昊 《石化技术》2022,(12):114-116+6
致密砂岩储层敏感性较强,为防止钻完井过程钻井液及完井液进地层后产生的储层损害,探讨隐形酸完井液相关特点,通过室内试验评价了隐形酸完井液体系总体效果,根据现场修井过程采用的淡水+5%KCl体系完井液体系,利用岩心实验分析了水锁效应,证实了现场完井液体系存在严重的水锁效应。加入防水锁剂PF-FC,能有效解决水锁效应,降低储层伤害。  相似文献   

9.
针对百口泉油田以前采用的PC—1修井液存在着对地层伤害、与地层流体不配伍等问题。对修井液进行了系列化研究,使之针对不同生产时期和阶段的油井修井采用不同的修井液配方体系,以满足井下作业的需要。经过室内评价试验和现场应用证明新修井液配方体系与地层流体有良好的配伍性。具原油防乳化性好、热稳定性好、携砂能力强、腐蚀性小、漏失少、表面张力低、易返排。对地层低伤害等优点。  相似文献   

10.
渤海南部A油田明化镇储层岩性为含砾砂岩,平均孔隙度30.9%,渗透率1 551 mD,具有高孔高渗特征。随着地层能量的不断下降,油井在修井过程中出现了不同程度的修井工作液漏失现象,导致水敏、结垢等伤害。本文通过对X井储层伤害因素分析,开发了针对该高孔高渗储层保护的修井工作液。现场应用表明,使用该体系在投产后油井产能恢复周期短,产液含水下降快,具有良好的增油效果。表明该体系能有效减小黏土膨胀、微粒运移、原油乳化、水敏等伤害,增大油流通道,提高作业后油井产能。  相似文献   

11.
对于酸敏储层和裸眼完井的井,不能采用酸化和射孔方法清除滤饼和清除固相损害,利用改进的岩心流动仪,对两种现场井液体系进行了 心污染与解堵实验,并对比评价了不同类型的氧化型解堵液和酸化液的腐蚀性,实验结果表明,正电胶海水井液具有较好的保护储层性能,氧化型解堵液的解堵效果明显优于非氧化型解堵液,氧化型解堵液适合于解除聚合物铵盐水钻井液固相损害,而且对金属设备的腐蚀性小,可以进行现场作业。  相似文献   

12.
TB-O型低伤害修井液的研制与应用   总被引:2,自引:0,他引:2  
采用无固相、低固相修井液修井时,修井液漏失量大、储层伤害大、修井效益低。针对这一问题,研究出了 1种TB -O型低伤害修井液,该修井液暂堵效果好,解堵彻底。配方选用YR -O1油溶性暂堵剂、HR水溶性非离子表面活性剂为分散剂和XT - 2 0羟乙基纤维素为增粘剂作为主要原料。室内试验表明:屏蔽带形成迅速,漏失量急速降低,解堵后渗透率恢复值达 99.2%以上。现场应用 10余口井表明:该体系针对性强,漏失量小,对储层损害小,修井效益高。  相似文献   

13.
三工河组油藏长期高强度开发,小修、大修、增产措施等各种作业频繁,造成三工河组油藏井下储层污染严重,大量的储层污染低产井严重制约了油藏的开发。通过对污染井取样,实验分析,储层污染物主要为垢、机杂、有机堵塞、粘土矿物、无机堵水剂、调剖剂冻胶与沉淀物、蜡。针对储层污染原因通过室内试验分析,研究适合三工河储层的解堵剂,提出相对应的盐酸体系、土酸体系综合解堵治理方案,采取酸化、溶蜡、粘土稳定一体化解堵技术对污染储层进行综合治理。2010-2012年,分别选择HCl体系和土酸体系作为解堵剂与溶蜡剂结合对三工河组油藏进行了综合解堵,施工19井次,有效11井次,措施有效率57.9%,部分解决了油田储层污染问题。  相似文献   

14.
在南海西部油田修井作业过程中,修井液滤失进入地层造成储层伤害。为解决现场修井液对管材腐蚀严重、易引发黏土水化膨胀、降低储层渗透率等问题,研制了一种低伤害低腐蚀的新型无固相修井液,对黏土防膨剂、助排剂和弱酸MHA进行了筛选,确定了修井液体系的最佳配方,研究了修井液的缓蚀性和对岩心渗透率的影响。结果表明,修井液体系组成为过滤海水、5%有机盐黏土防膨剂TFB-2、0.5%黏土防膨剂HAS、1%MHA、0.5%助排剂FC310时可有效抑制黏土水化膨胀,其黏土防膨率(约90%)大于现场修井液(70%);对管材的腐蚀速率低,70℃下对钢片的腐蚀速率为1.2361 g/(m~2·h),仅为现场修井液的43.8%;新型修井液可提高岩心渗透率,处理岩心后的岩心渗透率恢复率约为110%,大于现场修井液的70%。新型修井液油水界面张力低、易于返排,可有效提高近井地带的储层渗透率,性能优于现场修井液。  相似文献   

15.
通过对东方1-1气田待修井储层损害因素分析,该储层具有非均质性强、强水敏等特点,在修井过程中不仅要注重低渗防水锁损害、高渗防漏失损害,而且要防止水敏损害。针对以上储层保护要求,推荐以防水锁性(20.6mN/m)好、抑制性(防膨率99.5%)强和储层保护性(渗透率恢复值96.5%)好的络合水作为基液,构建络合水水凝胶暂堵修井液;该修井液不仅具有较好的封堵性能,而且本身具有较好的返排能力,在储层改造破胶液的作用下,渗透率恢复值均大于98%,能满足修井增产的目的。该体系在DF1-1-B2h井修井作业中取得了成功的应用。  相似文献   

16.
针对伊拉克Missan油田碳酸盐储层的特点,以腐蚀性较弱的HTG固体酸为主剂,采用NaCl、HCOONa复合盐水调节密度并加入一定量缓蚀剂制备了一种保护碳酸盐储层的酸化完井液体系:25%NaCl+10%HCOONa+3%HTG固体酸+3%JCI缓蚀剂,考察了该完井液对钻开液泥饼的冲洗能力、破胶能力,研究了完井液与钻开液滤液的配伍性以及完井液对储层的保护作用。结果表明,该酸化完井液体系腐蚀性较小,能够有效地清除钻开液形成的泥饼,在无完井破胶处理的条件下能将泥饼的残渣全部清除;钻开液污染后的岩心经该完井液体系处理后的渗透率恢复率可达95%以上,显示该完井液具有较好的储层保护作用。  相似文献   

17.
在修井过程中,低压低渗裂缝较发育储层易发生修井液漏失,造成水敏、液锁等损害。为使该损害降至最低,采用动态挂片失重法、页岩抑制防膨法及表/界面张力和流变参数测定方法,优选出了适合储层特点的缓蚀剂、黏土防膨剂、表面活性助排剂及增黏降滤失剂等修井液组分,得到最佳修井液XJPS配方:模拟地层水+1%GH1+0.3%HTB+2%DG-FPJ+0.3%XC+2%JMPS-1+1%PRDS+2%NaCOOH+0.3%NaOH。室内实验结果表明,该修井液具有流变参数适宜、低滤失(〈8 mL)、渗透率保留率高(〉85%)、返排效果好等特点,可以实现修井液在无固相、不形成致密泥饼下的低滤失性能。矿场应用效果表明,与原用修井液相比,试验井应用XJPS修井液作业后,日产气量、日产油量降幅和含水量增幅均较小,明显减轻了因修井液漏失储层造成的液锁损害和产能损失,提高了储层保护效果和修井效率。图2表7参8  相似文献   

18.
为减少清水、地层水、水基泡沫等常规水基修井液对吐哈盆地胜北油气田喀拉扎组油气藏储层的伤害,研制了一种无固相低密度油基泡沫修井液,考察了该修井液的性能并在喀拉扎组5口井进行了现场应用。结果表明,由30%地层水+70%原油+0.25%油基泡沫转化剂+0.20%油基泡沫稳泡剂+0.45%油基发泡剂组成的无固相低密度油基泡沫修井液密度在0.34~0.90 g/cm~3之间可调、泡沫强度高、泡沫稳定时间大于24 h、防漏封堵能力良好、污染岩心后的渗透率恢复率大于94%、抗温达120℃、抗压达10~11 MPa。根据油基泡沫流体特点,配套了修井工艺技术措施,该技术现场应用有效率为100%,平均每口井恢复期缩短3 d,对产层污染伤害较小,漏失量较少,修井液性能稳定,现场施工方便,成本较油基修井液低,可有效解决水敏和水锁严重的低压油气藏修井作业。  相似文献   

19.
研制和合成出高吸水性的树脂聚合物,将该聚合物加入水中配成束缚水修井液。该修井液是聚合物吸水后,能够完全将水束缚,并且吸水后的树脂颗粒可流动,游离水不大于修井液的5%的新型的适合于低压力系数的修井液。通过修井液的性能:稳定性、流变性和抗剪切性、滤失量、粘土膨胀率的影响、气侵和油侵试验、污染评价、与地层水的配伍性能、抗温性能、裂缝堵漏性、对油管腐蚀率、束缚水修井液的粒度研究和评价,得出适合于新疆气井现场的压力系数小于0.93的修井液,在新疆油田581井、256井、盆5井和五3东区57218井进行了应用,取得了良好的效果,不但能够将水束缚,使游离水小于5%,并且对储层伤害非常小,修井后产量恢复远远大于95%。  相似文献   

20.
保护低渗储层修井液的关键技术在于能有效预防或减轻因漏失对储层造成的液锁损害。对吐哈油田丘东地区低渗凝析气田前期使用的修井液进行吸水性实验及岩心污染实验评价,发现实验后岩心的含水饱和度迅速增加,且经其污染后岩心的渗透率恢复值仅为56.5%,表明液体侵入造成储层中等程度损害。针对以上问题,结合该地区气藏低孔、低渗、喉道细小、易产生液锁损害的特点,从助排、防液锁等方面考虑,优选出了效果优良的表面活性剂、增黏剂、降滤失剂等处理剂,并进行配伍性评价,研发出了低损害无固相修井液,其岩心渗透率恢复值高达85.3%,API滤失量小于8mL。在QD3井的现场应用中,低损害修井液有效地解决了该地层修井液漏失、液锁严重等问题,很大程度地提高了修井效率,增强了修井过程中的储层保护效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号