首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oil‐in‐water (O/W) emulsion‐gel systems containing high oil payloads are of increasing interest for food applications because of the reduction in encapsulation cost, consumption frequency or volume of food products. This study shows a facile approach to prepare stable alginate‐based O/W emulsions at high oil loading using a mixture of nonionic surfactants (Tween 80 and Span 20) as a template to form gelled‐emulsions. The synergistic effects of alginate and surfactants on the O/W emulsion properties were evaluated in terms of oil droplet size and emulsion stability. At 2% (w/v) of alginate and 1% (w/v) of surfactants, the size distribution of oil droplets was narrow and monomodal, even at an oil loading of 70% (v/v). The emulsions formed were stable against phase separation. The oil droplet size could be further reduced to below 1 μm using a high‐shear homogenizer. The emulsions formed could be easily molded and gelled into solids of different shapes via ionic gelation. The findings of this study create possible avenues for applications in food industries.  相似文献   

2.
Heteroaggregated oil‐in‐water (O/W) emulsions formed by targeted combination of oppositely charged emulsion droplets were proposed to be used for the modulation of physical properties of food systems, ideally achieving the formation of a particulate 3‐dimensional network at comparably low‐fat content. In this study, rheological properties of Quillaja saponins (QS), sugar beet pectin (SBP), and whey protein isolate (WPI) stabilized conventional and heteroaggregated O/W emulsions at oil contents of 10% to 60% (w/w) were investigated. Selected systems having an oil content of 30% (w/w) and different particle sizes (d43 ≤ 1.1 or ≥16.7 μm) were additionally subjected to chemical (genipin or glutaraldehyde) and thermal treatments, aiming to increase network stability. Subsequently, their rheological properties and stability were assessed. Yield stresses (τ0) of both conventional and heteroaggregated O/W emulsions were found to depend on emulsifier type, oil content, and initial droplet size. For conventional emulsions, high yield stresses were only observed for SBP‐based emulsions (τ0,SBP approximately 157 Pa). Highest yield stresses of heteroaggregates were observed when using small droplets stabilized by SBP/WPI (approximately 15.4 Pa), being higher than those of QS/WPI (approximately 1.6 Pa). Subsequent treatments led to significant alterations in rheological properties for SBP/WPI systems, with yield stresses increasing 29‐fold (glutaraldehyde) and 2‐fold (thermal treatment) compared to untreated heteroaggregates, thereby surpassing yield stresses of similarly treated conventional SBP emulsions. Genipin‐driven treatments proved to be ineffective. Results should be of interest to food manufacturers wishing to design viscoelastic food emulsion based systems at lower oil droplet contents.  相似文献   

3.
Abstract: Anthocyanins belong to the most important hydrophilic plant pigments. Outside their natural environment, these molecules are extremely unstable. Encapsulating them in submicron‐sized containers is one possibility to stabilize them for the use in bioactivity studies or functional foods. The containers have to be designed for a target release in the human gastrointestinal system. In this contribution, an anthocyanin‐rich bilberry extract was encapsulated in the inner aqueous phase of water‐in‐oil‐in‐water‐double emulsions. The physical stability as well as the release of free fatty acids and encapsulated, bioactive substances from the emulsions during an in vitro gastrointestinal passage were investigated. The focus was on the influence of emulsion microstructural parameters (for example, inner and outer droplet size, disperse phase content) and required additives (emulsifier systems), respectively. It could be shown that it is possible to stabilize anthocyanins in the inner phase of double emulsions. The release rate of free fatty acids during incubation was independent of the emulsifier used. However, the exterior (O/W)‐emulsifier has an impact on the stability of multiple emulsions in gastrointestinal environment and, thus, the location of release. Long‐chained emulsifiers like whey proteins are most suitable to transport a maximum amount of bioactive substances to the effective location, being the small intestine for anthocyanins. In addition, it was shown that the dominating release mechanism for entrapped matter was coalescence of the interior W1‐droplets with the surrounding W2‐phase. Practical Application: Microencapsulation of phytochemicals and bioactives is in the focus of functional food development. Here, the influence of matrix material, formulation, and structural parameters on stabilization and release of the molecules encapsulated has to be known for target product and process design. As the results are representative for hydrophilic active ingredients encapsulated in double emulsion systems a cross‐sectoral use in the pharmaceutical sector is possible.  相似文献   

4.
Abstract: This study examined the effectiveness of fat and water soluble antioxidants on the oxidative stability of omega (ω)‐3 rich table spreads, produced using novel multiple emulsion technology. Table spreads were produced by dispersing an oil‐in‐water (O/W) emulsion (500 g/kg 85 camelina/15 fish oil blend) in a hardstock/rapeseed oil blend, using sodium caseinate and polyglycerol polyricinoleate as emulsifiers. The O/W and oil‐in‐water‐in‐oil (O/W/O) emulsions contained either a water soluble antioxidant (green tea extract [GTE]), an oil soluble antioxidant (α‐Tocopherol), or both. Spreads containing α‐Tocopherol had the highest lipid hydroperoxide values, whereas spreads containing GTE had the lowest (P < 0.05), during storage at 5 °C, while p‐Anisidine values did not differ significantly. Particle size was generally unaffected by antioxidant type (P < 0.05). Double emulsion (O/W/O) structures were clearly seen in confocal images of the spreads. By the end of storage, none of the spreads had significantly different G′ values. Firmness (Newtons) of all spreads generally increased during storage (P < 0.05). Practical Application: Lipid oxidation is a major problem in omega‐3 rich oils, and can cause off‐odors and off‐flavors. Double emulsion technology was used to produce omega‐3 enriched spreads (O/W/O emulsions), wherein the omega‐3 oil was incorporated into the inner oil phase, to protect it from lipid oxidation. Antioxidants were added to further protect the spreads by reducing lipid oxidation. Spreads produced had good oxidative stability and possessed functional (omega‐3 addition) properties.  相似文献   

5.
Many of the sauces used in frozen meals are oil‐in‐water emulsions that consist of fat droplets dispersed within an aqueous medium. This type of emulsion must remain physically and chemically stable throughout processing, freezing, storage, and defrosting conditions. Knowledge of the fundamental physicochemical mechanisms responsible for the stability of emulsion‐based sauces is needed to design and fabricate high‐quality sauces with the desired sensory attributes. This review provides an overview of the current understanding of the influence of freezing and thawing on the stability of oil‐in‐water emulsions. In particular, it focuses on the influence of product composition (such as emulsifiers, biopolymers, salts, and cryoprotectants), homogenization conditions, and freezing/thawing conditions on the stability of emulsions. The information contained in this review may be useful for optimizing the design of emulsion‐based sauces for utilization in commercial food products.  相似文献   

6.
Oil‐in‐water (O/W) emulsions with varying concentration of oil phase, medium‐chain triglyceride (MCT), were prepared using phase‐separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase‐separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP‐rich phase and a lower GA‐rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP‐rich phase, then to the GA‐rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase‐separated emulsions were discussed.  相似文献   

7.
Water-in-oil-in-water (W/O/W) emulsions were formulated based on rapeseed oil, olive oil, olein and miglyol. Polyglycerol polyricinoleate and sodium caseinate were used as lipophilic and hydrophilic emulsifiers, respectively. Magnesium was encapsulated in the inner aqueous droplets. Emulsion stability was assayed through particle sizing and magnesium release at two storage temperatures (4 and 25 °C) over 1 month. Irrespective of the oil nature, both the primary W/O and W/O/W emulsions were quite stable regarding the size parameters, with 10-μm fat globules and 1-μm internal water droplets. Magnesium leakage from W/O/W emulsions was influenced by the oil type used in the formulation: the higher leakage values were obtained for the oils characterized by the lower viscosity and the higher proportion of saturated fatty acids. Magnesium release was not due to droplet–globule coalescence but rather to diffusion and/or permeation mechanisms with a characteristic rate that varied over time. In addition, W/O/W emulsions were resistant to various thermal treatments that mimicked that used in pasteurization processes. Finally, when W/O/W emulsions were placed in the presence of pancreatic lipase, the emulsion triglycerides were hydrolysed by the enzyme. These results indicated a possible use of W/O/W emulsions loaded with magnesium ions in food applications.  相似文献   

8.
This review describes advances in the preparation of food‐relevant double emulsions (DEs) of the water‐in‐oil‐in‐water (W/O/W) and oil‐in‐water‐in‐oil (O/W/O) types with emphasis on research published within the last decade. The information is assembled and critically evaluated according to the following aspects: the food application area, the range of encapsulated components and emulsion composition, the emulsification preparation methods, the balancing of the osmotic pressure, the stabilization by increased viscosity or gelation, the role of protein–polysaccharide interactions, and the techniques used to estimate DE yield and emulsification efficiency. Particular focus is directed toward the control of encapsulation and release behavior, including strategies that have been employed to improve the retention ability of the inner phase droplets by modifying the outer oil–water interface through mixed ingredient interactions, Pickering stabilization by particles, and biopolymer gelation. We also briefly consider the incorporation of DEs into dried microcapsules and the stability of W/O/W emulsions during eating and digestion. It would appear that 2 outstanding issues are currently preventing full realization of the potential of DEs in food applications: (i) the lack of availability of large‐scale production equipment to ensure efficient nondestructive 2nd‐stage emulsification, and (ii) the limited range of food‐grade ingredients available to successfully replace polyglycerol polyricinoleate as the primary emulsifier in W/O/W formulations.  相似文献   

9.
W/O/W emulsion is an emerging system in developing new functional and low-calorie food products. The aim of this study is to produce food-grade monodisperse water-in-oil-in-water (W/O/W) emulsions loaded with a hydrophilic bioactive oleuropein. W/O/W emulsions were prepared via high-pressure homogenization and subsequent microchannel (MC) emulsification. The internal aqueous phase was a 5-mM sodium phosphate buffer containing d(+)-glucose (5 wt.%) and oleuropein (0.1–0.7 wt.%). The oil phase consisted of soybean oil and tetraglycerin monolaurate condensed ricinoleic acid esters (TGCR; 3–8 wt.%). The external aqueous phase was a 5-mM sodium phosphate buffer containing d(+)-glucose (5 wt.%) and decaglycerol monolaurate (1 wt.%). Oleuropein-loaded submicron W/O emulsions with average droplet diameters as small as 0.15 μm and monomodal droplet size distributions were prepared by high-pressure homogenization when applying high TGCR concentrations of 5–8 wt.% and low oleuropein concentrations of 0.1–0.3 wt.%. Monodisperse oleuropein-loaded W/O/W emulsions with average W/O droplet diameters of around 27 μm and coefficients of variation of below 5 % were successfully prepared when using a silicon MC array plate with wide channels of 5-μm depth and 18-μm width. The monodisperse W/O/W emulsions prepared at high TGCR concentrations and low oleuropein concentrations were the most stable during 40 days of storage. The adsorption behavior of oleuropein at the internal aqueous–oil interface was relevant to W/O/W emulsions microstructure and stability. The results are believed to provide useful information for successfully preparing stable monodisperse W/O/W emulsions loaded with hydrophilic functional compounds. The surface activity of the loaded material seems to be a key parameter in optimizing the formulation of W/O/W food emulsion.  相似文献   

10.
BackgroundIn the past decades, many natural bioactive compounds with antioxidant, immunoregulatory, antimicrobial, and anticancer activities have been successfully identified in plant and animal materials. However, due to their poor solubility, unfavorable flavor, low bioavailability and instability during food processing and storage, the development of bioactive compounds used in the food industry presents many technological challenges.Scope and approachEmulsion electrospinning is a novel and simple technique to fabricate core-shell nanofibers, and either water-in-oil (W/O) or oil-in-water (O/W) emulsions can be electrospun to directly encapsulate hydrophilic or hydrophobic compounds into core-shell fibers, respectively. This review introduces fundamentals and advantages of emulsion electrospinning as well as its food applications. The effects of different types of emulsifiers on the formation of emulsion systems and emulsion-based electrospun fibers are highlighted. Further, the existing limitations and scope for future research are discussed.Key findings and conclusionsRecent studies have found that the emulsion-based electrospun nanofibers can enhance the encapsulation efficiency, stability, and bioavailability of bioactive compounds, as well as achieve targeted delivery and controlled release, thus providing new strategies to improve their barrier performance compared to conventional electrospinning and therefore facilitating the development of emulsion-based electrospun mats in the food industry.  相似文献   

11.
Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.  相似文献   

12.
Freezing and thawing of oil‐in‐water (O/W) emulsion‐type foods bring about oil–water separation and deterioration; hence, the effects of freezing and thawing conditions on the destabilization of O/W emulsions were examined. The freezing rate and thawing temperature hardly affected the stability of the O/W emulsion. O/W emulsions having different oil fractions were stored at temperatures ranging from –30 to –20 °C and then thawed. The stability after thawing depended on the storage temperature, irrespective of the oil fraction of the emulsion. A good correlation was found between the time at which the stability began to decrease and the time taken for the oil to crystalize. These results indicated that the dominant cause for the destabilization of the O/W emulsion during freezing and thawing is the crystallization of the oil phase and that the effects of the freezing and thawing rates on the stability are insignificant.  相似文献   

13.
Water-in-oil-in-water (W/O/W) double emulsions are systems where a water-in-oil emulsion (W/O) is dispersed in a second aqueous phase. The W/O emulsion exists in the suspending aqueous medium as oil globules containing smaller water droplets.
In this work, a selection of both materials and procedures has been made in order to obtain an optimal formulation of a W/O/W food emulsion for both yield and rheologica] properties.
The rheological properties of W/O/W emulsions have been studied by means of both steady-shear and oscillatory measurements, and appeared to be similar to those of a simple O/W emulsion having the same volume fraction of dispersed phase, but lower oil content.
This is of great interest to the food industry, since producing double emulsions with the same texture as simple ones, but a lower oil content, helps to formulate reduced-calorie foods.  相似文献   

14.
Properties of oil‐in‐water (O/W) emulsions affecting initial dynamic flavour release were studied in real time considering mouth conditions. Aroma molecules from different chemical classes at concentrations typically present in beverages were used. The emulsion droplet diameter showed no significant influence on the dynamic flavour release. No barrier properties of the emulsifier were found, as the flavour release from equilibrated emulsions flavoured via either the oil phase or the aqueous phase showed no significant difference. Emulsifier concentrations above the critical micelle concentration did not influence the release. Even though the chemical composition of the lipids had considerable influence on flavour release, phase transition during equilibration from the liquid to the solid state insignificantly affected the initial dynamic release process. Copyright © 2003 Society of Chemical Industry  相似文献   

15.
随着消费者对不饱和脂肪酸及其产品营养价值越来越重视,不饱和脂肪酸富集食品已经成为食品工业发展的趋势。水包油(oil-in-water,O/W)乳液是食品油脂最常见的存在形式,也是必需脂肪酸、脂溶性营养素和风味物质的有效载体。然而,富含不饱和脂肪酸的O/W乳液食品在加工和贮藏过程中极易氧化,引起风味恶化、营养损失,甚至形成威胁人类健康的有毒化合物。因此,如何提高乳液中油脂的氧化稳定性是食品工业中亟待解决的问题。然而,消费者对天然食品需求的提高,又限制了合成抗氧化剂和氢化等传统抗氧化方法的使用。本文综述了O/W乳液中油脂氧化的机制、影响因素和调控机制,重点概述了食品分散体中油-水界面的理化性质如何影响油脂氧化稳定性这一基础研究,为高稳定性乳液体系和新型功能食品的开发提供新思路和理论支持。  相似文献   

16.
《Food Hydrocolloids》2006,20(2-3):261-268
The inherent thermodynamic instability of water–oil–water (W/O/W) emulsions has restrictions for their application in food systems. The objective of this study was to develop a food grade W/O/W emulsions with high yield and stability using minimal concentrations of surfactants. Emulsions were prepared using soybean oil, polyglycerol ester of polyricinoleic acid (PGPR) alone or in combination with sodium caseinate (NaCN) as emulsifier(s) for primary water-in-oil (W/O) emulsions and NaCN as the sole emulsifier for secondary W/O/W emulsions. Increasing the concentration of PGPR (0.5–8%w/v) had no effect on the droplet sizes of the resulting W/O/W emulsions. However, significant increases in droplet sizes of W/O/W emulsions were observed when the concentration of NaCN in external phase was reduced from 0.5 to 0.03% (w/v) (p<0.05). Percentage yields of emulsions (using a water-soluble dye) improved when PGPR concentration in the inner phase was increased from 0.5 to 8% (w/v). A stable W/O/W emulsion with a yield >90% could be prepared with 4% (w/v) PGPR alone as primary hydrophobic emulsifier and 0.5% (w/v) NaCN as external hydrophilic emulsifier. The concentration of PGPR in the inner phase could be reduced to 2% (w/v) without affecting the yield and stability of the W/O/W emulsion by partially replacing PGPR with 0.5% (w/v) NaCN, which was added to the aqueous phase of the primary W/O emulsion. The results indicate that a possible synergistic effect may exist between PGPR and NaCN, thus allowing formulation of double emulsions with reduced surfactant concentration.  相似文献   

17.
The antioxidant properties of selected amino acids were tested using in vitro assays and oil‐in‐water (O/W) emulsions under riboflavin (RF) photosensitization. Headspace oxygen content, lipid hydroperoxides, and conjugated dienes were determined for the degree of oxidation. Riboflavin photosensitization was adapted as the oxidation driving force. In vitro assays showed that cysteine had the highest antioxidant properties followed by tryptophan and tyrosine. However, in O/W emulsions under RF photosensitization, tyrosine inhibited lipid oxidation whereas tryptophan acted as a prooxidant. Tryptophan accelerated the rates of oxidation in O/W emulsion without RF. The antioxidant properties of amino acids differed depending on the antioxidant determination methods, oxidation driving forces, and food matrices.  相似文献   

18.
基于大豆多糖的复合乳液储藏稳定性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
乳液是脂溶性生物活性化合物很好的包埋和输送载体,脂溶活性物质能够很好的包埋在油滴中,增强其在水相中的溶解度和稳定性。基于大豆多糖修饰的蛋白复合乳液具有更小更分散的油滴,在食品工业中应用前景广阔。在高温、高盐及酸性的工艺操作环境中,大豆酸溶蛋白(acid soluble soy protein,ASSP)/大豆多糖(soy soluble polysaccharides,SSPS)复合乳液的货架期是实现其有效利用的关键。本论文通过研究热处理、p H及盐离子等条件对O/W体系ASSP/SSPS复合乳液的影响,考察评价ASSP/SSPS复合乳液的贮藏稳定性。结果表明,热处理能够有效增强ASSP/SSPS乳液长期稳定性,受p H变化影响较小。当在p H值为3.0~4.0的范围贮藏时,ASSP/SSPS乳液的稳定性能最优越,基本不受盐离子的影响,并且储存60 d后乳液粒径基本不变。ASSP/SSPS复合乳液的透射电镜和扫描电镜研究可以看出,贮藏60 d后,因ASSP/SSPS的复合界面行为增强,乳液微滴表面形成了更稳定不可逆的ASSP/SSPS复合膜,乳液微滴分布均匀,粒径大小没有明显改变,粒径在268.92~315.26之间。文章通过对ASSP/SSPS复合乳液储存稳定性的系统分析,为复合乳液的工业化生产提供理论指导。  相似文献   

19.
More polyunsaturated fats in processed foods and fewer additives are a huge demand of public health agencies and consumers. Consequently, although foods have an enhanced tendency to oxidize, the usage of antioxidants, especially synthetic antioxidants, is restrained. An alternate solution is to better control the localization of reactants inside the food matrix to limit oxidation. This review establishes the state‐of‐the‐art on lipid oxidation in oil‐in‐water (O/W) emulsions, with an emphasis on the role of the interfacial region, a critical area in the system in that respect. We first provide a summary on the essential basic knowledge regarding (i) the structure of O/W emulsions and interfaces and (ii) the general mechanisms of lipid oxidation. Then, we discuss the factors involved in the development of lipid oxidation in O/W emulsions with a special focus on the role played by the interfacial region. The multiple effects that can be attributed to emulsifiers according to their chemical structure and their location, and the interrelationships between the parameters that define the physicochemistry and structure of emulsions are highlighted. This work sheds new light on the interpretation of reported results that are sometimes ambiguous or contradictory.  相似文献   

20.
Antioxidant properties of the aqueous extracts of hulled barley (Hordeum vulgare L.) that had been roasted at 210 °C for 20 min were determined in bulk oil and oil‐in‐water (O/W) emulsions. Bulk oils were heated at 60, 100, and 180 °C, and O/W emulsions were oxidized under riboflavin photosensitization. The content of phenolic compounds was analyzed by high‐performance liquid chromatography, and in vitro antioxidant assays were also conducted. The major phenolics contained in the aqueous extract of roasted hulled barley (AERB) were p‐coumaric, ferulic, protocatechuic, chlorogenic, 4‐hydroxybenzoic, and vanillic acids. Depending on the concentration and oxidation temperature, AERB had antioxidant or prooxidant properties in bulk oil. At 60 °C, AERB at a concentration of 0.5% acted as a prooxidant, whereas at 1.0% it acted as an antioxidant. At 100 °C, AERB acted as an antioxidant irrespective of concentration. In 180 °C conditions, 0.5% AERB acted as a prooxidant, whereas other concentrations of AERB acted as antioxidants. In the case of riboflavin photosensitized O/W emulsions, AERB showed antioxidant properties irrespective of concentration. Antioxidant abilities of AERB are affected by the food matrix, including bulk oil and O/W emulsions, and concentrations of AERB, even though diverse phenolic compounds may display high antioxidant properties in in vitro assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号