共查询到20条相似文献,搜索用时 15 毫秒
1.
Two wideband tapered slot antennas are designed, fabricated, and tested. The first antenna, which is fabricated on a high dielectric constant substrate (?r = 10.2), shows a measured return loss of better than 10 dB from 1.6 to 12.4 GHz (7.7:1 bandwidth), and an antenna gain varying from 3.6 to 7.8 dBi. The second antenna is built on a low dielectric constant substrate (?r = 2.2), and demonstrates return loss of better than 10 dB from 1.8 to 15.2 GHz (8.4:1 bandwidth). The second antenna also has improved antenna gain, from 5 to 15.6 dBi, and is used to build a wideband 1 × 4 H‐plane phased array with a total gain of 9–17 dBi and a beam steering angle of ±15° from 3 to 12 GHz. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007. 相似文献
2.
In this endeavor, a new multiple‐input‐multiple‐output antenna with a sharp rejection at wireless local area network (WLAN) band is designed and practically examined for portable wireless ultra‐wideband applications. The intended diversity antenna possess a small size of 15 mm × 26 mm and two inverted L‐strip are loaded over the conventional rectangular patch antenna to form protrudent‐shaped radiator that acts as a radiating element. The sharp band‐rejection capability at WLAN is established by incising the L‐shaped slits at the decoupling structure. More than ?21 dB isolation is accomplished for the complete working band (ie, 2.87 ‐17 GHz). Degradation in the antenna efficiency at the center frequency of band rejection corroborates the good interference rejection capability. The working capabilities of the intended antenna are tested by using the isolation between the ports, total efficiency, gain, envelope correlation coefficient, radiation pattern, mean effective gain, and total active reflection coefficient. 相似文献
3.
A compact size of 40 × 40 mm2 ( λ0 × λ0 ) semi‐elliptical slotted ground structure (SESGS) directional ultra‐wideband (UWB) antenna is proposed for radar imaging applications. A vertical semi‐elliptical slot is inserted into ground and subsequently, an axis of semi‐ellipse is rotated diagonally (with 45°) in direction of the substrate. Axes of semi‐ellipse are optimized symmetrically around the circular patch to work antenna as a reflector. Furthermore, semi‐elliptical slot is rotated horizontally (with 90°) again to improve the impedance bandwidth. Proposed antenna achieves fractional bandwidth around 83% covering the UWB frequency range from 4.40 to 10.60 GHz (S11 < ?10 dB) having 4.5/6/7/8/9.3/10.2 GHz resonant frequencies. Also, antenna is capable to send low‐distortion Gaussian pulses with fidelity factor more than 95% in time‐domain. Measured gain and half power beam width (HPBW) are 6.1‐9.1 dBi and 44°‐29° in 4.40‐10.60 GHz band, respectively, which show an improvement of 1‐3 dBi in gain and half power beam‐width is reduced by 5°‐10° when compared with previously designed antennas. Experimental results show good agreement with CST simulation. 相似文献
4.
A very compact ultra‐wideband (UWB) slot antenna with three L‐shaped slots for notched‐band characteristics is presented in this article. The antenna is designed and fabricated using a new stepped slot with different size, integrated in the ground plane, and excited by a 50 Ω microstrip transmission line. The stepped slot is used to minimize the dimensions of the antenna and to achieve an impedance bandwidth between 2.65 and 11.05 GHz with voltage standing wave ratio (VSWR) less than 2. The length of the stepped slot is equal to a quarter wavelength to create a resonance in the desired frequency. Three L‐shaped slots with various sizes are etched in the ground plane to reject three frequency bands in C‐band (3.7‐4.2 GHz), WLAN (5.15‐5.825 GHz), and X‐band (7.25‐7.75 GHz), respectively. The notched‐band frequency can be controlled by changing the length of the L‐shaped slot. The proposed antenna has a very small size (20.25 × 8 × 1.27 mm3) compared with previous works. The measured and simulated results show a good agreement in terms of radiation pattern and impedance matching. 相似文献
5.
Sarah Jacob V. A. Shameena S. Mridula C. K. Anandan K. Vasudevan P. Mohanan 《国际射频与微波计算机辅助工程杂志》2012,22(5):594-602
A compact coplanar waveguide‐fed (CPW) monopole antenna for ultra‐wideband wireless communication is presented. The proposed antenna comprises of a CPW‐fed beveled rectangular patch with a modified slotted ground. The overall size of the antenna is 30 mm × 27 mm × 1.6 mm. The lower edge of the band is attained by properly decoupling the resonant frequencies due to the extended ground plane and the beveled rectangular patch of the antenna. The upper edge of the radiating band is enhanced by beveling the ground plane corners near the feed point. Experimental results show that the designed antenna operates in the 2.7–12 GHz band, for S11 ≤ ?10 dB with a gain of 2.7–5 dBi. Both the frequency domain and time domain characteristics of the antenna are investigated using antenna transfer function. It is observed that the antenna exhibits identical radiation patterns and reasonable transient characteristics over the entire operating band. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012. 相似文献
6.
This paper presents a novel ultra‐wideband (UWB) antenna printed on a 70 μm thick flexible substrate. The proposed antenna consists of a hybrid‐shaped patch fed by coplanar waveguide (CPW). The ground planes on opposite sides of the feeding line have different height to improve antenna bandwidth. Simulation shows that the proposed antenna maintain wide bandwidth when changing its substrate's thickness and dielectric constant, as well as bending the antenna on a cylindrical foam. The proposed antenna is fabricated in laboratory with a simple and low‐cost wet printed circuit board (PCB) etching technique. Measured bandwidths cover 3.06 to 13.58, 2.8 to 13.55, and 3.1 to 12.8 GHz in cases of flat state and bent with radii of 20 and 10 mm, respectively. Measured radiation patterns show the antenna is omnidirectional in flat and bent cases. 相似文献
7.
A miniaturized ultra‐wideband (UWB) monopole antenna with reconfigurable multiple‐band notched performance is demonstrated. By modifying the shape of the patch and the ground plane, the UWB operation is achieved. The first and second band‐notches are respectively generated by etching a rectangular slot with open ends and a U‐shaped slot in the patch, and the third band‐notch is produced by loading a C‐shaped parasitic element beneath the patch. To realize the reconfigurable band‐notched functions, four PIN diodes are inserted in three band‐rejected structures. The antenna has a compact dimension of 30 mm × 26 mm. It can switch between a UWB state and several band‐notch states by alternating the states of the diodes. Also, good radiation patterns are obtained. 相似文献
8.
A novel compact self‐similar fractal ultra‐wideband (UWB) multiple‐input‐multiple‐output (MIMO) antenna is presented. This fractal geometry is designed by using iterated function system (IFS). Self‐similar fractal geometry is used here to achieve miniaturization and wideband performance. The self‐similarity dimension of proposed fractal geometry is 1.79, which is a fractional dimension. The antenna consists of two novel self‐similar fractal monopole‐antenna elements and their metallic area is minimized by 29.68% at second iteration. A ground stub of T‐shape with vertical slot enhances isolation and impedance bandwidth of proposed MIMO antenna. This antenna has a compact dimension of 24 × 32 mm2 and impedance bandwidth (S11 < ?10 dB) of 9.4 GHz ranging from 3.1 to 12.5 GHz with an isolation better than 16 dB. The various diversity performance parameters are also determined. There is good agreement between measured and simulated results, which confirms that the proposed antenna is acceptable for UWB applications. 相似文献
9.
Single‐layer and bilayer four‐arm spiral antennas and their feeding methods for Mode 1 operation are discussed in this article. Important design parameters such as metal‐to‐slot ratio and growth rate for better impedance matching and reduced far‐field contamination are studied. Three feeding methods for Mode 1 operation are compared: a bundle of four coaxial cables for a single‐layer spiral and vertical and horizontal feeds by two coaxial cables for bilayer spirals. It is shown that the single‐layer spiral maintains beam symmetry with Wobble on Wave better than 1 dB at θ = 30° over 10:1 bandwidth. However, the required beamformer is complex and expensive. Proposed, horizontally and vertically fed bilayer spirals need simpler beamformer while maintaining similar far‐field performance over narrower 6:1 and 2:1 bandwidths, respectively, thus making them useful for many wideband applications. Modeling is conducted by a method of moments and validated with a finite element method and measurements. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 22: 652–662, 2012. 相似文献
11.
In the present study, ultra‐wide band antenna attachable on unmanned aerial vehicle (UAV) surfaces usable as signal detection antenna in various bands was designed, and the practicality of the developed antenna was verified by attaching the antenna to a UAV and measuring the performance. The antenna suggested in this article was manufactured by forming a hemispheric conductor having the shape of a baseball seam on the ground and satisfying a self‐complementary through an image theory. This Hemispheric shape can reduce a drag and risk of breakage. The diameter of the antenna is 400 mm (0.4λL and λL is 0.3 GHz.), the height is 200 mm (0.2λL), and the ground size is 800 mm (0.8λL) × 800 mm (0.8λL). The designed antenna showed an ultra‐wide band property as it was matched to a band from 300 MHz to 10 GHz. After being attached to the bottom of a 7.3:1 scale UAV, the antenna showed matching properties from 1.85 to 10 GHz above and maintained a monopole pattern in all directions and in a bandwidth. To author's knowledge, the antenna was proper to using as a signal detection antenna which need wide bandwidth, conical pattern, drag reduction and reduced risk of breakage. 相似文献
12.
A compact modified C‐shaped monopole antenna with broadband circular polarization is proposed, fabricated and measured. The antenna structure is simple and only consists of combined modified C‐shaped radiation patch and an improved ground plane with the overall size of 25 × 25 × 1 mm3. By cutting the corner on the modified C‐shaped patch and adding triangular stubs on the ground plane, the wide impedance bandwidth and axial ratio bandwidth are achieved. The design process of the antenna is given, and the circular polarization mechanism of the circularly polarized antenna is analyzed from the surface current distributions. The measured impedance bandwidth is 95.2% (4.4‐12.4 GHz) with return loss better than 10 dB, and the measured 3 dB axial ratio bandwidth is 96.8% (4.42‐12.72 GHz). The peak gain is above 3.0 dBi within the working band, which indicates that it is suitable for application of ultra‐wideband (UWB) wireless communication systems and satellite communication systems. 相似文献
13.
Ultra‐wideband technology has experienced a rapid growth over the last decade for its contribution in different sectors of human society. Printed antennas are considered as preferred platform for implementing this technology because of its alluring characteristics like light weight, low cost, ease of fabrication, integration capability with other systems, etc. Antennas developed for ultra‐wideband applications are desired to have notch characteristics for avoiding interference with other existing radio communication systems. The techniques related to design and developments of printed band‐notched antennas are continuously upgraded for improving the antenna performance. In this article, a comprehensive review has been carried out on ultra‐wideband antennas with band notch characteristics proposed in around last decade. The band notched UWB antennas available in the literature have broadly been classified into five different categories based on their notch characteristics like single band‐notch, dual band‐notch, triple band‐notch, quad/multiple band‐notch, and reconfigurable/tunable band‐notch, respectively. This review exercise may be helpful for beginners working on ultra‐wideband band‐notched antennas and also such a review process is not available in the open literature to the best of author's knowledge. 相似文献
14.
In this article, a metamaterial‐based broadband low‐profile antenna is presented. The proposed antenna employed an array of uniplanar quasi‐composite right/left‐hand (CRLH) metamaterial cells. This structure contributes to exciting the operating modes in lower frequencies. The antenna has an overall electrical size of 0.75 × 0.60 × 0.07 λ03 (λ0 is the center operating wavelength in free space) and provides a 25% measured bandwidth with the center frequency of 5.1 GHz and maximum gain of 6.6 dB. The proposed antenna is an appropriate candidate for WLAN, WiMAX, and other wireless communication applications. 相似文献
15.
M. Idrees Magray Khalid Muzaffar Zamir Wani Rajesh K. Singh G. S. Karthikeya Shiban K. Koul 《国际射频与微波计算机辅助工程杂志》2019,29(11)
A compact ultra‐wideband (UWB) reconfigurable microstrip fed monopole antenna having size of 0.22 λ0 × 0.28 λ0 × 0.005 λ0 with switchable frequency bands is presented. Triple band notched characteristics are achieved by inserting two stubs at top of radiator and one slot in between the radiator and microstrip feed line. Proposed antenna achieves reconfigurability with three PIN diodes at strategic positions to obtain eight different operational modes. In one of the operational modes, antenna operates in the entire UWB (3‐14 GHz) with fractional bandwidth of 127.5%. Two stubs are used to notch two frequency bands worldwide interoperability for microwave access (3.3‐3.6 GHz/WiMAX) and C‐band (3.7‐4.2 GHz). T‐shaped slot is also inserted to notch wireless local area network (5.725‐5.825 GHz/WLAN) frequency band. Proper biasing of PIN diodes is done by using suitable chip inductors and capacitors. Proposed antenna exhibits stable radiation patterns with average gain of around 3 dBi. Simulation and measurement results are in good agreement. Proposed antenna is suitable for on‐demand band rejection of parasitic bands coexisting in UWB. 相似文献
16.
Raed Abdulkareem Abdulhasan Rozlan Alias Khairun Nidzam Ramli Fauziahanim Che Seman Raed A. Abd‐Alhameed 《国际射频与微波计算机辅助工程杂志》2019,29(8)
In this article, a novel uniplanar ultra‐wideband (UWB) stop frequency selective surface (FSS) was miniaturized to maximize the gain of a compact UWB monopole antenna for microwave imaging applications. The single‐plane FSS unit cell size was only 0.095λ × 0.095λ for a lower‐operating frequency had been introduced, which was miniaturized by combining a square‐loop with a cross‐dipole on FR4 substrate. The proposed hexagonal antenna was printed on FR4 substrate with coplanar waveguide feed, which was further backed at 21.6 mm by 3 × 3 FSS array. The unit cell was modeled with an equivalent circuit, while the measured characteristics of fabricated FSS array and the antenna prototypes were validated with the simulation outcomes. The FSS displayed transmission magnitude below ?10 dB and linear reflection phase over the bandwidth of 2.6 to 11.1 GHz. The proposed antenna prototype achieved excellent gain improvement about 3.5 dBi, unidirectional radiation, and bandwidth of 3.8 to 10.6 GHz. Exceptional agreements were observed between the simulation and the measured outcomes. Hence, a new UWB baggage scanner system was developed to assess the short distance imaging of simulated small metallic objects in handbag model. The system based on the proposed antenna displayed a higher resolution image than the antenna without FSS. 相似文献
17.
In this article, the design and analysis of a double‐ridged conical horn antenna with high gain and low cross polarization for wideband applications is presented. Double‐ridged pyramidal horn antennas have been investigated in many references. There are no papers in the literature which are devoted to design and analysis of double‐ridged conical horn antenna. The designed antenna has a voltage standing wave ratio (VSWR) less than 2.1 for the frequency range of 8–18 GHz. Moreover, the proposed antenna exhibits extremely low cross polarization, low side lobe level, high gain, and stable far‐field radiation characteristics in the entire operating bandwidth. A new technique for synthesizing of the horn flare section is introduced. A coaxial line to circular double‐ridged waveguide transition is introduced for coaxial feeding of the designed antenna. The proposed antenna is simulated with commercially available packages such as CST microwave studio and Ansoft HFSS in the operating frequency range. Simulation results for the VSWR, radiation patterns, and gain of the designed antenna over the frequency band 8–18 GHz are presented and discussed. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009. 相似文献
18.
In this article, a novel approach is introduced for the design of wideband antennas in a specified frequency bandwidth (BW). In the proposed approach, the frequency BW is divided into some sub‐bands. Then, the narrowband antennas are designed for the consecutive frequency sub‐bands, and the antennas are connected together by a proposed active circuit, so that their frequency BWs combined. The proposed active circuit may be used to connect as many as antenna needed for the design. An active microstrip antenna is designed for the frequency BW of 4–10 GHz with a gain better than 5 dB by the proposed method. Fabrication and measurement results show the effectiveness of the proposed methodology. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010. 相似文献
19.
Mohammad Amin Honarvar Farid Jolani Abdolmehdi Dadgarpour Bal S Virdee 《国际射频与微波计算机辅助工程杂志》2013,23(1):47-51
A compact phase shifter is presented for wideband applications consisting of circular patches located at close proximity to each other which are coupled with interconnected ground‐plane circular slots located beneath the circular patches. In the proposed technique the slot‐line length and radius of patch determines the magnitude of phase shift. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013. 相似文献
20.
In this article, a novel inverted L‐shaped microstrip‐fed wideband circularly polarized (CP) modified square‐slot antenna is designed. By cutting a pair of triangle chamfers and introducing a pair of triangle patches at the square‐slot, the antenna achieves a wideband CP radiation. Moreover, CP performance of the antenna can also be remarkably enhanced by protruding an L‐shaped strip and embedding a tuning rectangle slot into the slot ground. The measured results demonstrate that the axial‐ratio bandwidth for AR < 3 is 75.1% (from 4.45 to 9.8 GHz) and the impedance bandwidth (|S11| < ?10 dB) reaches 65.8% (from 4.95 to 9.8 GHz). In addition, surface current studies are performed to illustrate the operating mechanism of CP operation, and the antenna has bidirectional radiation characteristics with an average gain of ~4 dBic within the CP band. 相似文献