首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Amorphous‐oxide thin‐film‐transistor (TFT) arrays have been developed as TFT backplanes for large‐sized active‐matrix organic light‐emitting‐diode (AMOLED) displays. An amorphous‐IGZO (indium gallium zinc oxide) bottom‐gate TFT with an etch‐stop layer (ESL) delivered excel lent electrical performance with a field‐effect mobility of 21 cm2/V‐sec, an on/off ratio of >108, and a subthreshold slope (SS) of 0.29 V/dec. Also, a new pixel circuit for AMOLED displays based on amorphous‐oxide semiconductor TFTs is proposed. The circuit consists of four switching TFTs and one driving TFT. The circuit simulation results showed that the new pixel circuit has better performance than conventional threshold‐voltage (VTH) compensation pixel circuits, especially in the negative state. A full‐color 19‐in. AMOLED display with the new pixel circuit was fabricated, and the pixel circuit operation was verified in a 19‐in. AMOLED display. The AMOLED display with a‐IGZO TFT array is promising for large‐sized TV because a‐IGZO TFTs can provide a large‐sized backplane with excellent uniformity and device reliability.  相似文献   

2.
Abstract— A full‐color AMOLED display with an RGBW color filter pattern has been fabricated. Displays with this format require about one‐half the power of analogous RGB displays. RGBW and RGB 2.16‐in.‐diagonal displays with average power consumptions of 180 and 340 mW, respectively, were characterized for a set of standard digital still camera images at a luminance of 100 cd/m2. In both cases, a white‐emitting AMOLED was used as the light source, and standard LCD filters were used to provide the R, G, and B emission. The color gamuts of these displays were identical and the higher overall efficiency of the RGBW format results from two factors. First, a large fraction of a typical image is near neutral in color and can be reproduced using the white sub‐pixel. Second, the white sub‐pixel in an RGBW AMOLED display is highly efficient because of the absence of any color filter. The efficiency of these displays can be further enhanced by choosing a white emitter optimized to the target display white point (in this case D65). A two‐emission layer configuration based upon separate yellow and blue‐emitting regions is shown to be well suited for both the RGBW and RGB formats.  相似文献   

3.
We present a thin‐film dual‐layer bottom barrier on polyimide that is compatible with 350°C backplane processing for organic light‐emitting diode displays and that can facilitate foldable active‐matrix organic light‐emitting diode devices with a bending radius of <2 mm. We demonstrate organic light‐emitting diodes that survive bending over 0.5 mm radius for 10.000× based on the high‐temperature bottom barrier. Furthermore, we show compatibility of the bottom barrier with the backplane process by fabricating active‐matrix organic light‐emitting diode displays on GEN1‐sized substrates.  相似文献   

4.
Abstract— High‐mobility high‐reliability low‐RC‐delay oxide TFTs have been developed. Their performances are good enough for AMOLED displays even for the large‐sized super‐high‐resolution, or high‐frame‐rate displays. In this paper, the status of oxide‐TFT development and the issues for the mass‐production of next‐generation AMOLED displays will be discussed, and three types of AMOLED displays using different oxide materials and TFT structures will be demonstrated.  相似文献   

5.
Abstract— By using current technology, it is possible to design and fabricate performance‐competitive TV‐sized AMOLED displays. In this paper, the system design considerations are described that lead to the selection of the device architecture (including a stacked white OLED‐emitting unit), the backplane technology [an amorphous Si (a‐Si) backplane with compensation for TFT degradation], and module design (for long life and low cost). The resulting AMOLED displays will meet performance and lifetime requirements, and will be manufacturing cost‐competitive for TV applications. A high‐performance 14‐in. AMOLED display was fabricated by using an in‐line OLED deposition machine to demonstrate some of these approaches. The chosen OLED technologies are scalable to larger glass substrate sizes compatible with existing a‐Si backplane fabs.  相似文献   

6.
In this study, a 5.9‐inch foldable active‐matrix organic light emitting diode (AMOLED) display was developed. A folding test was performed repeatedly. The display survived the folding test (100,000 folds) with a curvature radius of 2 mm. To protect an organic light emitting diode (OLED) against moisture, inorganic passivation layers are provided on the upper and lower sides of the flexible display. Using our transfer technology, high density passivation layers can be obtained. The measured water vapor transmission rate of the layer is 7 × 10?6 g/m2?day or less, which improves OLED reliability. With these techniques, we have developed a book‐type display, which is repeatedly foldable like a book, and a tri‐fold display including a display area, which is foldable in three.  相似文献   

7.
A prototype 13.3‐inch 8k4k 664‐ppi high‐resolution foldable organic light emitting diode display is constructed. C‐axis aligned a‐b‐plane‐anchored crystal In–Ga–Zn oxide field effect transistors designed using a 1.5‐µm rule process are used in the backplane. Each pixel circuit has three transistors and one capacitor, and an external circuit is used to correct pixel current.  相似文献   

8.
Abstract— A voltage‐programming method with transimpedance‐feedback control technique is proposed for compensating threshold voltage and mobility variations of driving thin‐film transistors (TFTs) in large‐area high‐resolution polycrystalline‐silicon (poly‐Si) active‐matrix organic light‐emitting‐diode (AMOLED) displays. Those electrical characteristic variations of TFTs throughout a large‐area high‐resolution panel result in picture‐quality non‐uniformity of AMOLED displays. The simulation and experimental results of the proposed method show that the maximum emission‐current error for 30‐in. full‐high‐definition television (HDTV) applications is less than 1.9% when the mobility variation and the threshold‐voltage variation are ±12.5% and ±0.3 V, respectively. The proposed method is the best programming method for large‐area high‐resolution AMOLEDs among the published methods.  相似文献   

9.
Abstract— Active‐matrix organic light‐emitting‐diode (AMOLED) displays are now entering the marketplace. The use of a thin‐film‐transistor (TFT) active matrix allows OLED displays to be larger in size, higher in resolutions and lower in power dissipation than is possible using a conventional passive matrix. A number of TFT active‐matrix pixel circuits have been developed for luminance control, while correcting for initial and electrically stressed TFT parameter variations. Previous circuits and driving methods are reviewed. A new driving method is presented in which the threshold‐voltage (Vt) compensation performance, along with various circuit improvements for amorphous‐silicon (a‐Si) TFT pixel circuits using voltage data, are discussed. This new driving method along with various circuit improvements is demonstrated in a state‐of‐the‐art 20‐in. a‐Si TFT AMOLED HDTV.  相似文献   

10.
Abstract— We have developed an integrated poly‐Si TFT current data driver with a data‐line pre‐charge function for active‐matrix organic light‐emitting diode (AMOLED) displays. The current data driver is capable of outputting highly accurate (±0.8%) current determined by 6‐bit digital input data. A novel current‐programming approach employing a data‐line pre‐charge function helps achieve accurate current programming at low brightness. A 1.9‐in. 120 × 136‐pixel AMOLED display using these circuits was demonstrated.  相似文献   

11.
Abstract— A 14.1‐in. AMOLED display using nanocrystalline silicon (nc‐Si) TFTs has been developed. Nanocrystalline silicon was deposited using conventional 13.56‐MHz plasma‐enhanced chemical vapor deposition (PECVD). Detailed thin‐film characterization of nc‐Si films was followed by development of nc‐Si TFTs, which demonstrate a field‐effect mobility of about 0.6–1.0 cm2/V‐sec. The nc‐Si TFTs show no significant shift in threshold voltage when over 700 hours of constant current stress is applied, indicating a stable TFT backplane. The nc‐Si TFTs were successfully integrated into a 14.1‐in. AMOLED display. The display shows no significant current decrease in the driving TFT of the 2T‐1cap circuit because the TFTs are highly stable. In addition to the improved lifetime of AMOLED displays, the development of nc‐Si TFTs using a conventional 13.56‐MHz PECVD system offers considerable cost advantages over other laser and non‐laser polysilicon‐TFT technologies for large‐sized AMOLEDs.  相似文献   

12.
High pixel density displays are demanded for active matrix organic light‐emitting diode displays (AMOLED) in applications such as virtual reality headsets, micro‐displays, and high‐end smartphones. Parasitic emission from non‐addressed neighboring pixels (crosstalk) is a common problem in such high pixel density AMOLED, and this crosstalk becomes more severe as the pixel density and fill ratio of the display increases. One of the causes of crosstalk is parasitic currents that travel through common organic semiconductor layers. In this paper, we model and quantify the pixel crosstalk using a 2 + 1D finite element model that is based on the conductivity of the common layer and the luminance–current–voltage curves of the subpixels as measured input parameters. We assess the effect of crosstalk on the pixel current, observed color, and luminance. The 2 + 1D model limits the number of degrees of freedom so that calculations on a standard personal computer are feasible.  相似文献   

13.
Abstract— High‐performance solution‐processed oxide‐semiconductor (OS) thin‐film transistors (TFTs) and their application to a TFT backplane for active‐matrix organic light‐emitting‐diode (AMOLED) displays are reported. For this work, bottom‐gated TFTs having spin‐coated amorphous In‐Zn‐O (IZO) active layers formed at 450°C have been fabricated. A mobility (μ) as high as 5.0 cm2/V‐sec, ?0.5 V of threshold voltage (VT), 0.7 V/dec of subthreshold swing (SS), and 6.9 × 108 of on‐off current ratio were obtained by using an etch‐stopper (ES) structure TFT. TFTs exhibited uniform characteristics within 150 × 150‐mm2 substrates. Based on these results, a 2.2‐in. AMOLED display driven by spin‐coated IZO TFTs have also been fabricated. In order to investigate operation instability, a negative‐bias‐temperature‐stress (NBTS) test was carried out at 60°C in ambient air. The IZO‐TFT showed ?2.5 V of threshold‐voltage shift (ΔVT) after 10,800 sec of stress time, comparable with the level (ΔVT = ?1.96 V) of conventional vacuum‐deposited a‐Si TFTs. Also, other issues regarding solution‐processed OS technology, including the instability, lowering process temperature, and printable devices are discussed.  相似文献   

14.
Abstract— Large‐sized active‐matrix organic light‐emitting diode (AMOLED) displays require high‐frame‐rate driving technology to achieve high‐quality 3‐D images. However, higher‐frame‐rate driving decreases the time available for compensating Vth in the pixel circuit. Therefore, a new method needs to be developed to compensate the pixel circuit in a shorter time interval. In this work, image quality of a 14‐in. quarter full‐high‐definition (qFHD) AMOLED driven at a frame rate of over 240 Hz was investigated. It was found that image degradation is related to the time available for compensation of the driving TFT threshold voltage. To solve this problem, novel AMOLED pixel circuits for high‐speed operation are proposed to compensate threshold‐voltage variation at frame rates above 240 Hz. When Vth is varied over ±1.0 V, conventional pixel circuits showed current deviations of 22.8 and 39.8% at 240 and 480 Hz, respectively, while the new pixel circuits showed deviations of only 2.6 and 5.4%.  相似文献   

15.
In this paper, we propose an in‐cell active touch circuit using the concept of floating common electrode for large size in‐plane‐switching liquid crystal displays. Compared with the conventional passive in‐cell touch circuit, the proposed method can greatly reduce the readout channel numbers by sharing the sensing bus for one column. Because the touch signal is amplified in the pixel, the touch panel can be easily scaled up in size. Simulation results show that the difference between touch and no‐touch signals can be as large as 10 μA even with threshold voltage shift of ±1 V. The possible issues of the proposed method are experimentally verified.  相似文献   

16.
High‐performance solution‐based n‐type metal oxide thin‐film transistors (TFTs), fabricated directly on polyimide foil at a post‐annealing temperature of only 250 °C, are realized and reported. Saturation mobilities exceeding 2 cm²/(Vs) and on‐to‐off current ratios up to 108 are achieved. The usage of these oxide n‐type TFTs as the pixel drive and select transistors in future flexible active‐matrix organic light‐emitting diode (AMOLED) displays is proposed. With these oxide n‐type TFTs, fast and low‐voltage n‐type only flexible circuitry is demonstrated. Furthermore, a complete 8‐bit radio‐frequency identification transponder chip on foil has been fabricated and measured, to prove that these oxide n‐type TFTs have reached already a high level of yield and reliability. The integration of the same solution‐based oxide n‐type TFTs with organic p‐type TFTs into hybrid complementary circuitry on polyimide foil is demonstrated. A comparison between both the n‐type only and complementary elementary circuitry shows the high potential of this hybrid complementary technology for future line‐drive circuitry embedded at the borders of flexible AMOLED displays.  相似文献   

17.
Abstract— A new voltage‐driving active‐matrix organic light‐emitting diode (AMOLED) pixel circuit is proposed to improve the display image‐quality of AMOLED displays. Because OLEDs are current‐driven devices, the I × R voltage drop in the power lines is evitable. Accordingly, the I × R voltage‐drop compensation scheme should be included in the pixel‐driving method when a voltage‐compensation method is used. The proposed pixel was designed for the compensation of an I × R voltage drop in the power lines as well as for the compensation of the threshold‐voltage non‐uniformity of low‐temperature polycrystalline‐silicon thin‐film transistors (LTPS TFTs). In order to verify the compensation ability of the proposed pixel, SPICE simulation was performed and compared with those of other conventional pixels. When the Vss voltage varies from 0 to 1 V, the drain current of the proposed pixel decreased by under 1% while that of conventional Vth compensation methods without Vss compensation decreased by over 60%. 2.2‐in. QCIF+ full‐color AMOLED displays, which employ the proposed pixel, have been also developed. It was verified by comparison of the display image quality with a conventional panel that our proposed panel successfully overcame the voltage‐drop problems in the power lines.  相似文献   

18.
This paper presents a method that can convert a given 3D mesh into a flat‐foldable model consisting of rigid panels. A previous work proposed a method to assist manual design of a single component of such flat‐foldable model, consisting of vertically‐connected side panels as well as horizontal top and bottom panels. Our method semi‐automatically generates a more complicated model that approximates the input mesh with multiple convex components. The user specifies the folding direction of each convex component and the fidelity of shape approximation. Given the user inputs, our method optimizes shapes and positions of panels of each convex component in order to make the whole model flat‐foldable. The user can check a folding animation of the output model. We demonstrate the effectiveness of our method by fabricating physical paper prototypes of flat‐foldable models.  相似文献   

19.
Abstract— Active‐matrix organic light‐emitting diode (AMOLED) displays have gained wide attention and are expected to dominate the flat‐panel‐display industry in the near future. However, organic light‐emitting devices have stringent demands on the driving transistors due to their current‐driving characteristics. In recent years, the oxide‐semiconductor‐based thin‐film transistors (oxide TFTs) have also been widely investigated due to their various benefits. In this paper, the development and performance of oxide TFTs will be discussed. Specifically, effects of back‐channel interface conditions on these devices will be investigated. The performance and bias stress stability of the oxide TFTs were improved by inserting a SiOx protection layer and an N2O plasma treatment on the back‐channel interface. On the other hand, considering the n‐type nature of oxide TFTs, 2.4‐in. AMOLED displays with oxide TFTs and both normal and inverted OLEDs were developed and their reliability was studied. Results of the checkerboard stimuli tests show that the inverted OLEDs indeed have some advantages due to their suitable driving schemes. In addition, a novel 2.4‐in. transparent AMOLED display with a high transparency of 45% and high resolution of 166 ppi was also demonstrated using all the transparent or semi‐transparent materials, based on oxide‐TFT technologies.  相似文献   

20.
A new feedback current programming architecture is described, which is compatible with active matrix organic light‐emitting diode (AMOLED) displays having the 2T1C pixel structure. The new pixel programming approach is compatible with all TFT technologies and can compensate for non‐uniformities in both threshold voltage and carrier mobility of the pixel OLED drive TFT. Based on circuit simulations, a pixel drive current of less than 10 nA can be programmed in less than 50 µ. This new approach can be implemented within an AMOLED external or integrated display data driver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号