首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates active disturbance rejection control involving the fractional‐order tracking differentiator, the fractional‐order PID controller with compensation and the fractional‐order extended state observer for nonlinear fractional‐order systems. Firstly, the fractional‐order optimal‐time control scheme is studied to propose the fractional‐order tracking differentiator by the Hamilton function and fractional‐order optimal conditions. Secondly, the linear fractional‐order extend state observer is offered to acquire the estimated value of the sum of nonlinear functions and disturbances existing in the investigated nonlinear fractional‐order plant. For the disturbance existing in the feedback output, the effect of the disturbance is discussed to choose a reasonable parameter in fractional‐order extended state observer. Thirdly, by this observed value, the nonlinear fractional‐order plant is converted into a linear fractional‐order plant by adding the compensation in the controller. With the aid of real root boundary, complex root boundary, and imaginary boot boundary, the approximate stabilizing boundary with respect to the integral and differential coefficients is determined for the given proportional coefficient, integral order and differential order. By choosing the suitable parameters, the fractional‐order active disturbance rejection control scheme can deal with the unknown nonlinear functions and disturbances. Finally, the illustrative examples are given to verify the effectiveness of fractional‐order active disturbance rejection control scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
针对一类控制方向未知的含有时变不确定参数和未知时变有界扰动的全状态约束非线性系统,本文提出了一种基于障碍Lyapunov函数的反步自适应控制方法.障碍Lyapunov函数保证了系统状态在运行过程中始终保持在约束区间内;Nussbaum型函数的引入解决了系统控制方向未知的问题;光滑投影算法确保了不确定时变参数的有界性.障碍Lyapunov函数、Nussbaum型函数及光滑投影算法与反步自适应方法的有效结合首次解决了控制方向未知的全状态约束非线性系统的跟踪控制问题.所设计的自适应鲁棒控制器能在满足状态约束的前提下确保闭环系统的所有信号有界.通过恰当地选取设计参数,系统的跟踪误差将收敛于0的任意小的邻域内.仿真结果表明了控制方案的可行性.  相似文献   

3.
This paper presents a new sporadic control approach to the tracking problem for MIMO closed‐loop systems. An LTI sampled data plant with unmeasurable state affected by external unknown disturbances is considered. The plant is interconnected to an event‐based digital dynamic output‐feedback controller via a network. Both the external reference and the unknown disturbance are assumed to be generated as the free output response of unstable LTI systems. The main feature of the new event‐driven communication logic (CL) is that it works without the strict requirement of a state vector available for measurement. The purpose of the CL is to reduce as much as possible the number of triggered messages along the feedback and feedforward paths with respect to periodic sampling, still preserving internal stability and without appreciably degrading the control system tracking capability. The proposed event‐driven CL is composed of a sensor CL (SCL) and of a controller CL (CCL). The SCL is based on the computation of a quadratic functional of the tracking error and of a corresponding suitably computed time‐varying threshold: a network message from the sensor to the controller is triggered only if the functional equals or exceeds the current value of the threshold. The CCL is directly driven by the SCL: the dynamic output controller sends a feedforward message to the plant only if it has received a message from the sensor at the previous sampled instant. Formulation of the controller in discrete‐time form facilitates its implementation and provides a minimum inter‐event time given by the sampling period. An example taken from the related literature shows the effectiveness of the new approach. The focus of this paper is on the stability and performance loss problems relative to the sporadic nature of the control law. Other topics such as network delay or packets dropout are not considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the problem of fixed‐time consensus tracking control for a class of second‐order multiagent systems under an undirected communication graph. A distributed output‐feedback fixed‐time consensus tracking control scheme is proposed to make the states of all individual agents simultaneously track a time‐varying reference state even when the reference state is available only to a subset of the group members and only output measurements are available for feedback. Homogeneous Lyapunov function and homogeneity property are employed to show that the control scheme can guarantee the consensus tracking errors converging the origin in finite time which is bounded by a fixed constant independent of initial conditions. Numerical simulations are carried out to demonstrate the effectiveness of the proposed control law.  相似文献   

5.
This paper investigates the global practical tracking via adaptive output‐feedback for a class of uncertain nonlinear systems. Essentially different from the closely related literature, the system under investigation possesses unknown time‐varying control coefficients and a polynomial‐of‐output growth rate, and meanwhile, the system nonlinearities and the reference signal allow serious unknowns. For this, an adaptive observer is designed to reconstruct the system unmeasured states, where a new dynamic gain is introduced to compensate the serious unknowns in the system nonlinearities and the reference signal. Based on this and by backstepping technique, an adaptive output‐feedback controller is successfully designed, such that all the states of the closed‐loop system are bounded, and the tracking error will be prescribed sufficiently small after a finite time. A numerical simulation is provided to demonstrate the effectiveness of the proposed method.  相似文献   

6.
7.
This paper aims at investigating the tracking control problem for a class of multi‐input multi‐output (MIMO) nonlinear systems with non‐square control gain matrix subject to unknown control direction and uncertain desired trajectory. By using the artificial neural network (NN) reconstructs the target trajectory with actual disguised trajectory, we are able to design a practical and stable tracking control scheme without the need for the unavailable desired trajectory. Nussbaum‐type function is incorporated in the control law to handle the unknown control direction. The remarkable feature of the proposed scheme is that it is robust against modeling uncertainties and tolerant to actuation faults, yet guarantees that the closed‐loop system is stable in the sense of ultimately uniformly bounded (UUB). The effectiveness of the proposed control schemes are illustrated through simulation results.  相似文献   

8.
This paper studies the problem of stabilizing reference trajectories (also called as the trajectory tracking problem) for underactuated marine vehicles under predefined tracking error constraints. The boundary functions of the predefined constraints are asymmetric and time‐varying. The time‐varying boundary functions allow us to quantify prescribed performance of tracking errors on both transient and steady‐state stages. To overcome difficulties raised by underactuation and nonzero off‐diagonal terms in the system matrices, we develop a novel transverse function control approach to introduce an additional control input in backstepping procedure. This approach provides practical stabilization of any smooth reference trajectory, whether this trajectory is feasible or not. By practical stabilization, we mean that the tracking errors of vehicle position and orientation converge to a small neighborhood of zero. With the introduction of an error transformation function, we construct an inverse‐hyperbolic‐tangent‐like barrier Lyapunov function to show practical stability of the closed‐loop systems with prescribed transient and steady‐state performances. To deal with unmodeled dynamic uncertainties and external disturbances, we employ neural network (NN) approximators to estimate uncertain dynamics and present disturbance observers to estimate unknown disturbances. Subsequently, we develop adaptive control, based on NN approximators and disturbance estimates, that guarantees the prescribed performance of tracking errors during the transient stage of on‐line NN weight adaptations and disturbance estimates. Simulation results show the performance of the proposed tracking control.  相似文献   

9.
This paper studies the problem of adaptive fuzzy asymptotic tracking control for multiple input multiple output nonlinear systems in nonstrict‐feedback form. Full state constraints, input quantization, and unknown control direction are simultaneously considered in the systems. By using the fuzzy logic systems, the unknown nonlinear functions are identified. A modified partition of variables is introduced to handle the difficulty caused by nonstrict‐feedback structure. In each step of the backstepping design, the symmetric barrier Lyapunov functions are designed to avoid the breach of the state constraints, and the issues of overparametrization and unknown control direction are settled via introducing two compensation functions and the property of Nussbaum function, respectively. Furthermore, an adaptive fuzzy asymptotic tracking control strategy is raised. Based on Lyapunov stability analysis, the developed control strategy can effectually ensure that all the system variables are bounded, and the tracking errors asymptotically converge to zero. Eventually, simulation results are supplied to verify the feasibility of the proposed scheme.  相似文献   

10.
In this article, a novel data‐driven robust backstepping control (DRBC) approach for tracking of unmanned surface vehicles (USVs) with uncertainties and unknown parametric dynamics has been developed. Main contributions are fourfold: (a) Unlike previous approaches, within the DRBC scheme, backstepping decoupled technique and data‐driven sliding‐mode control (DSMC) can be effectively cohered. (b) Using backstepping philosophy, a new data‐driven PI‐type sliding‐mode surface is devised, such that strong robustness with simple structure can be ensured. (c) Complex unknowns including couplings, uncertainties and parametric dynamics are sufficiently lumped, and are totally compensated by the extended state observer. (d) The entire DRBC scheme eventually achieves accurate tracking of USVs with strong couplings, uncertainties and unknown parametric dynamics. The efficacy and superiority of the proposed DRBC approach is validated on a prototype USV.  相似文献   

11.
In this paper, an adaptive backstepping tracking control scheme is proposed for a class of nonlinear state time‐varying delay systems, which are subject to parametric uncertainties and external disturbances. The bounds of the time delays and their derivatives are assumed to be unknown. Tuning functions method is exploited to construct the control law and adaptive laws. Unknown time‐varying delays are compensated by using appropriate Lyapunov–Krasovskii functional. It is shown that the proposed controller can guarantee the boundedness of all the closed‐loop signals. The tracking performance can be adjusted by choosing suitable design parameters. At the end, a simulation example is provided to illustrate the effectiveness of the design procedure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is an extended study of an existing block backstepping control scheme designed for a class of perturbed multi‐input systems with multiple time‐varying delays to solve regulation problems, where the time‐varying delays must be linear with state variables. A new control scheme is proposed in this research where all the unknown multiple time‐varying delay terms in the dynamic equations can be nonlinear state functions in non‐strict feedback form, and the upper bounds of the time‐delays as well as their derivatives need not to be known in advance. Another improvement is to further alleviate the problem of “explosion of complexity,” i.e., to reduce the number of time derivatives of virtual inputs that the designers have to compute in the design of controllers. This is done by utilizing an existent derivative estimation algorithm to estimate the perturbations in the designing of proposed controllers. Adaptive mechanisms are also embedded in the controllers so that the upper bounds of perturbations and perturbation estimation errors are not required to be known beforehand. The resultant controlled systems guarantee asymptotic stability in accordance with the Lyapunov stability theorem. Finally, a numerical example and a practical application are demonstrated to verify the merits and feasibility of the proposed control scheme.  相似文献   

13.
This paper focuses on an adaptive practical preassigned finite‐time control problem for a class of unknown pure‐feedback nonlinear systems with full state constraints. Two new concepts, called preassigned finite‐time function and practical preassigned finite‐time stability, are defined. In order to achieve the main result, the pure‐feedback system is first transformed into an affine strict‐feedback nonlinear system based on the mean value theorem. Then, an adaptive preassigned finite‐time controller is obtained based on a modified barrier Lyapunov function and backstepping technique. Finally, simulation examples are exhibited to demonstrate the effectiveness of the proposed scheme.  相似文献   

14.
This paper investigates the tracking problem for a class of uncertain switched nonlinear delayed systems with nonstrict‐feedback form. To address this problem, by introducing a new common Lyapunov function (CLF), an adaptive neural network dynamic surface control is proposed. The state‐dependent switching rule is designed to orchestrate which subsystem is active at each time instance. In order to compensate unknown delay terms, an appropriate Lyapunov‐Krasovskii functional is considered in the constructing of the CLF. In addition, a novel switched neural network–based observer is constructed to estimate system states through the output signal. To maintain the tracking error performance within a predefined bound, a prescribed performance bound approach is employed. It is proved that by the proposed output‐feedback control, all the signals of the closed‐loop system are bounded under the switching law. Moreover, the transient and steady‐state tracking performance is guaranteed by the prescribed performance bound. Finally, the effectiveness of the proposed method is illustrated by two numerical and practical examples.  相似文献   

15.
In this paper, an adaptive decentralized tracking control scheme is designed for large‐scale nonlinear systems with input quantization, actuator faults, and external disturbance. The nonlinearities, time‐varying actuator faults, and disturbance are assumed to exist unknown upper and lower bounds. Then, an adaptive decentralized fault‐tolerant tracking control method is designed without using backstepping technique and neural networks. In the proposed control scheme, adaptive mechanisms are used to compensate the effects of unknown nonlinearities, input quantization, actuator faults, and disturbance. The designed adaptive control strategy can guarantee that all the signals of each subsystem are bounded and the tracking errors of all subsystems converge asymptotically to zero. Finally, simulation results are provided to illustrate the effectiveness of the designed approach.  相似文献   

16.
This paper gives a first try to the finite‐time control for nonlinear systems with unknown parametric uncertainty and external disturbances. The serious uncertainties generated by unknown parameters are compensated by skillfully using an adaptive control technique. Exact knowledge of the upper bounds of the disturbances is removed by employing a disturbance observer–based control method. Then, based on the disturbance observer–based control, backstepping technique, finite‐time adaptive control, and Lyapunov stability theory, a composite adaptive state‐feedback controller is strictly designed and analyzed, which guarantees the closed‐loop system to be practically finite‐time stable. Finally, both the practical and numerical examples are presented and compared to demonstrate the effectiveness of the proposed scheme.  相似文献   

17.
In this work, we present a novel adaptive decentralized finite‐time fault‐tolerant control algorithm for a class of multi‐input–multi‐output interconnected nonlinear systems with output constraint requirements for each vertex. The actuator for each system can be subject to unknown multiplicative and additive faults. Parametric system uncertainties that model the system dynamics for each vertex can be effectively dealt with by the proposed control scheme. The control input gain functions of the nonlinear systems can be not fully known and state dependent. Backstepping design with a tan‐type barrier Lyapunov function and a new structure of stabilizing function is presented. We show that under the proposed control scheme, with the use of graph theory, finite‐time convergence of the system output tracking error into a small set around zero is guaranteed for each vertex, while the time‐varying constraint requirement on the system output tracking error for each vertex will not be violated during operation. An illustrative example on 2 interacting 2‐degree‐of‐freedom robot manipulators is presented in the end to further demonstrate the effectiveness of the proposed control scheme.  相似文献   

18.
针对系统动态未知的无人艇(USV)在推进器故障与饱和约束下轨迹跟踪问题,本文提出一种基于固定时间扩张状态观测器的积分滑模容错控制方法.首先,构造固定时间扩张状态观测器,实现未知速度信息、集总未知非线性的准确估计.进而,通过引入一种新型设定时间性能函数,约束位姿跟踪误差,并利用误差转换函数将其转化为无约束误差动态系统.在此基础上,结合固定时间积分滑动模态与饱和补偿动态系统,设计固定时间控制策略,保证系统实际固定时间稳定且位姿跟踪误差严格位于指定范围内.最后,仿真验证所提出控制方法的有效性与优越性.  相似文献   

19.
In this paper, the problem of adaptive fuzzy tracking control for a class of uncertain switched nonlinear systems with unknown control direction is studied. Aiming at the problem, an adaptive control scheme with Nussbaum gain technology is constructed by using the average dwell time (ADT) method and the backstepping method to overcome the unknown control direction, and time-varying asymmetric barrier Lyapunov functions (ABLFs) are adopted to ensure the full-state constraints satisfaction. The proposed control scheme guarantees that all closed-loop signals remain bounded under a class of switching signals with ADT, while the output tracking error converges to a small neighborhood of the zero. An important innovation of this design method is that the unknown control direction, asymmetric time-varying full state constraints, and predefined time-varying output requirements are simultaneously considered in uncertain switched nonlinear systems for the first time. We set a moment in advance, and make the systems comply with the constraint conditions before running the moment by the shift function nested in the first time-varying ABLF. Finally, a simulation example verifies the effectiveness of the proposed scheme.  相似文献   

20.
本文研究了一类高阶非线性不确定系统的自适应实际输出跟踪控制问题, 该问题在未知控制系数的下界精确知道的假设下已经得到了研究. 基于新的鲁棒自适应控制和连续控制思想, 成功去除该假设条件. 进而应用增加幂次积分的方法, 给出了构造连续自适应实际输出跟踪控制器的系统化方法. 该控制器确保闭环系统的所有状态全局稳定, 并且经过有限时间后, 跟踪误差可以被某一事先给定的任意正数界定. 最后, 通过一个仿真算例验证了理论结果的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号