共查询到20条相似文献,搜索用时 30 毫秒
1.
2.
针对车辆队列建模时参数不确定导致控制存在误差的问题,以及队列中跟随车辆稳定性问题,分析车辆纵向动力学,设计一个鲁棒MPC控制器和滑移率控制器来提高队列车辆的控制精度和稳定性.首先对纵向MPC控制器进行改进,提高车辆队列控制精度;同时为防止跟随车辆的轮胎打滑,设计一个MPC滑移率控制器对跟随车辆的轮胎滑移率进行控制约束,保证了跟随车辆的纵向稳定性.最后,进行仿真实验验证其有效性.仿真实验结果表明,与传统的LQR、MPC控制器相比,改进的鲁棒MPC纵向控制器控制精度更高,同时MPC滑移率控制器可防止跟随车辆的轮胎打滑,保证了跟随车辆的纵向稳定性. 相似文献
3.
4.
针对双侧电驱动履带车辆运动控制强非线性、强耦合和不确定性的特点,提出一种解耦的控制结构,并设计各子系统控制器.首先,将运动控制系统分解为速度、横摆角速度两个独立子系统,克服传统差速控制存在的强耦合.其次,采用积分滑模控制方法,引入非线性积分滑模面,设计了能有效克服路面不确定扰动、消除积分饱和的速度控制器,实现车速的无超调、无静差的跟踪;考虑驱动电机饱和约束,结合模糊自适应与滑模控制算法,设计了能够适应转向阻力非线性变化的横摆角速度控制器,提高车辆转向运动控制的抗扰能力、降低控制量抖振.仿真结果表明,控制策略实现多种工况下车辆快速、准确的直线、转向运动控制. 相似文献
5.
基于神经网络的非线性系统多步预测控制 总被引:15,自引:0,他引:15
针对离散非线性系统,利用非线性激励函数的局部线性表示,提出一种可用于非线性过程的神经网络多步预测控制方法,并给出了控制律的收敛性分析.该方法将非线性系统处理成简单的线性和非线性两部分,对复杂的非线性多步预测方程给出了直观而有效的线性形式,并用线性预测控制方法求得控制律,避免了复杂的非线性优化求解.仿真结果表明了该算法的有效性. 相似文献
6.
针对一类具有特殊模型的非线性系统本文提出了一种新型神经网络预测控制算法。该算法利用线性系统预测控制技术和神经网络的非线性映射及并行处理能力来求实际控制量,避免了解非线性方程和非线性预测控制所需的在线数值寻优计算,减少了计算量和计算时间。仿真结果表明了该算法的何效性。 相似文献
7.
8.
本文针对一类具有未知非线性函数和未知虚拟系数非线性函数的二阶非线性系统 ,提出了一种基于神经网络的稳定自适应输出跟踪控制方法 .用李雅普诺夫稳定性分析方法证明了本文的神经网络自适应控制器能够使受控系统稳定 ,并使输出跟踪误差随时间趋于无穷而收敛到零 .仿真算例证明了该算法的有效性 相似文献
9.
水下机器人神经网络自适应逆控制 总被引:6,自引:1,他引:6
水下环境的复杂性以及自身模型的不确定性,给水下机器人的控制带来很大困难。针对水下机器人的特点和控制方面所存在的问题,提出了基于预测—校正控制策略的水下机器人神经网络自适应逆控制结构及训练算法。通过在线辨识系统的前向模型,估计出系统的Jacobian矩阵,然后采用预报误差法实现控制器的自适应。同时,为了提高系统对于外扰的鲁棒性,在伪线性回归算法的基础上,在评价函数中引入微分项。理论分析和仿真结果表明,与原来的算法相比,微分项的引入改善了系统对于外扰的鲁棒性和动态性能。 相似文献
10.
This paper addresses synchronisation problem of high-order multi-input/multi-output (MIMO) multi-agent systems. Each agent has unknown nonlinear dynamics and is subject to uncertain external disturbances. The agents must follow a reference trajectory. An adaptive distributed controller based on relative information of neighbours of each agent is designed to solve the problem for any undirected connected communication topology. A radial basis function neural network is used to represent the controller's unknown structure. Lyapunov stability analysis is employed to guarantee stability of the overall system. By the theoretical analysis, the closed-loop control system is shown to be uniformly ultimately bounded. Finally, simulations are provided to show effectiveness of the proposed control method against uncertainty and disturbances. 相似文献
11.
12.
非线性系统神经网络稳定自适应控制器的研究 总被引:5,自引:0,他引:5
提出一种利用神经网络逼近具有不确定性及随机干扰的仿射非线性系统新算法,采用自适应控制率在线调节网络权值,基于H∞控制选择控制量以削减噪声干扰,并从理论上证明了采用该算法后系统的全局稳定性。将该算法用于气动系统位置跟踪,仿真结果表明该算法具有跟踪精度高,收敛速度快的优点。 相似文献
13.
一种基于神经网络的鲁棒型预测控制算法 总被引:2,自引:0,他引:2
针对复杂工业过程中存在的时滞、强干扰的严重非线性控制对象,仿真研究了一种利用神经网络作为预测模型,遗传算法作为滚动优化策略的预测控制方法.在算法中为了提高辨识非线性系统的鲁棒性以及降低控制器对未建模动态的敏感性,引入了一种伪模型,即将系统实际输出与预测输出综合成的新的输出信号,由该信号代替量测输出.仿真结果表明对于非线性被控对象该方法具有良好的鲁捧性和跟踪性能,对于改善非线性预测控制不失为一种有益的尝试. 相似文献
14.
15.
DU YanLi WU QingXian JIANG ChangSheng & XUE YaLi College of Astronautics Nanjing University of Aeronautics Astronautics Nanjing China College of Automation Engineering 《中国科学:信息科学(英文版)》2011,(3):482-497
The controller design for a near-space hypersonic vehicle (NHV) is challenging due to its plant uncertainties and sensitivity to atmospheric disturbances such as gusts and turbulence. This paper first derives 12 states equations of NHVs subjected to variable wind field, and presents a novel recurrent neural network (RNN) control method for restraining atmospheric disturbances. The method devises a new B-spline recurrent functional link network (BRFLN) and combines it with the nonlinear generalized predictiv... 相似文献
16.
非线性系统的神经网络鲁棒自适应跟踪控制 总被引:1,自引:0,他引:1
针对一类具有未知非线性函数和未知虚拟系数非线性函数的二阶非线性系统,提出了一种神经网络鲁棒自适应输出跟踪控制方法.用李雅普诺夫稳定性分析方法证明了本文的神经网络自适应控制器能够使受控系统内的所有信号均为有界.选择的神经网络权值调整规律可以防止自适应控制中的参数漂移. 相似文献
17.
A new approach of direct adaptive control of single input single output nonlinear systems in affine form using single-hidden layer neural network (NN) is introduced. In contrast to the algorithms in the literature, the weights adaptation laws are based on the control error and not on the tracking error or its filtered version. Since the control error is being expressed in terms of the NN controller, hence its weights updating laws are obtained via back-propagation concept. A fuzzy inference system (FIS) with heuristically defined rules is introduced to provide an estimate of this error based on the past history of the system behaviour. The stability of the closed loop is studied using Lyapunov theory. A fixed structure is then proposed for the FIS and the design parameters reduce to the parameters of the NN. The method is reproducible and does not require any pre-training of the network weights. 相似文献
18.
Yeqin Wang Zhen Wu Aoyun Xia Chang Guo Yuyan Chen Yan Yang Zhongyi Tang 《Concurrency and Computation》2019,31(10)
Aiming at the deficiency of optimal control energy management strategy, a model of energy management controller for hybrid electric vehicle (HEV) is constructed based on Kernel Fuzzy C‐means Clustering (KFCM) and multi‐neural network. Using energy management control strategy based on PMP, the operational parameters of the four driving modes for HEV is extracted; the data cluster corresponding to the driving mode is generated by clustering through the KFCM method and is used as the training samples for the feedforward neural network. Taking the battery SOC, needed power and speed as the inputs of neural network, and taking engine power as the output of neural network, four sub‐neural network models are established. Taking the vehicle driving needed power at the current moment and the engine output power at the previous moment as characteristic parameters, the corresponding sub‐neural network model is selected for output prediction according to the proportional relationship between the driving demand torque and the engine output power. The simulation results show that, compared with the energy management strategy based on PMP, the calculation time is greatly shortened using the proposed control strategy, and the real‐time performance is better. The fuel economy is a little decreased under the condition of meeting the requirements, but better dynamic performance can be obtained. 相似文献
19.
This paper studies synchronization to a desired trajectory for multi‐agent systems with second‐order integrator dynamics and unknown nonlinearities and disturbances. The agents can have different dynamics and the treatment is for directed graphs with fixed communication topologies. The command generator or leader node dynamics is also nonlinear and unknown. Cooperative tracking adaptive controllers are designed based on each node maintaining a neural network parametric approximator and suitably tuning it to guarantee stability and performance. A Lyapunov‐based proof shows the ultimate boundedness of the tracking error. A simulation example with nodes having second‐order Lagrangian dynamics verifies the performance of the cooperative tracking adaptive controller. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
20.