首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates sliding mode control for multi‐input–multi‐output discrete‐time system with disturbances. First of all, a novel nonlinear sliding surface, named as hyperbolic hybrid switching sliding surface, is proposed. Two different types of hyperbolic functions are introduced into the proposed sliding surface. Due to the changing of values of the hyperbolic functions, sliding surface switching occurs during the control process, which ensures that both settling time and overshoot can be decreased. The sliding mode controller is obtained based on a novel nonlinear reaching law. The nonlinear reaching law contains several parameters, and by properly designing these parameters, we can decrease the bounds of the sliding variables to small values. The stability analysis of the sliding motion is carried out from singular system viewpoint. Finally, simulation examples and comparison examples are presented to illustrate that the system performance is improved obviously by proposed novel sliding mode control, and the system is robust to the disturbances.  相似文献   

2.
In this paper, a robust stabilization problem for a class of linear time‐varying delay systems with disturbances is studied using sliding mode techniques. Both matched and mismatched disturbances, involving time‐varying delay, are considered. The disturbances are nonlinear and have nonlinear bounds which are employed for the control design. A sliding surface is designed and the stability of the corresponding sliding motion is analysed based on the Razumikhin Theorem. Then a static output feedback sliding mode control with time delay is synthesized to drive the system to the sliding surface in finite time. Conservatism is reduced by using features of sliding mode control and systems structure. Simulation results show the effectiveness of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Second‐order sliding mode control (2‐smc) and dynamic sliding mode control (dsmc) eliminate the disturbing characteristic of chattering in static sliding mode control under the assumption that the derivative of the sliding surface is available or complex inequalities at the acceleration level can be constructed. In this paper, passivity‐based adaptive and non‐adaptive chattering‐free sliding mode controllers are proposed assuming that the upper bound of the norm of the derivative of the sliding surface is available, a weaker and easy to implement assumption in comparison to those of 2‐smc and dsmc. The closed‐loop system accounts explicitly for the invariance condition without reaching phase, and therefore for a desired transient response with global exponential convergence of tracking errors. Preliminary experiments are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The problem of finite‐time tracking control is studied for uncertain nonlinear mechanical systems. To achieve finite‐time convergence of tracking errors, a simple linear sliding surface based on polynomial reference trajectory is proposed to enable the trajectory tracking errors to converge to zero in a finite time, which is assigned arbitrarily in advance. The sliding mode control technique is employed in the development of the finite‐time controller to guarantee the excellent robustness of the closed‐loop system. The proposed sliding mode scheme eliminates the reaching phase problem, so that the closed‐loop system always holds the invariance property to parametric uncertainties and external disturbances. Lyapunov stability analysis is performed to show the global finite‐time convergence of the tracking errors. A numerical example of a rigid spacecraft attitude tracking problem demonstrates the effectiveness of the proposed controller.  相似文献   

5.
This paper investigates the continuous finite‐time control problem of high‐order uncertain nonlinear systems with mismatched disturbances through the terminal sliding mode control method. By constructing a novel dynamic terminal sliding manifold based on the disturbance estimations of high‐order sliding mode observers, a continuous finite‐time terminal sliding mode control method is developed to counteract mismatched disturbances. To avoid discontinuous control action, the switching terms of a dynamic terminal sliding manifold are designed to appear only in the derivative term of the control variable. To validate its effectiveness, the proposed control method is applied to a DC‐DC buck converter system. The experimental results show the proposed method exhibits better control performance than a chattering free controller, such as mismatched disturbances rejection and smaller steady‐state fluctuations.  相似文献   

6.
Presented is a method of smooth sliding mode control design to provide for an asymptotic second‐order sliding mode on the selected sliding surface. The control law is a nonlinear dynamic feedback that in absence of unknown disturbances provides for an asymptotic second‐order sliding mode. Application of the second‐order disturbance observer in a combination with the proposed continuous control law practically gives the second‐order sliding accuracy in presence of unknown disturbances and discrete‐time control update. The piecewise constant control feedback is “smooth” in the sense that its derivative numerically taken at sampling rate does not contain high frequency components. A numerical example is presented.  相似文献   

7.
An extended state observer based fractional order sliding‐mode control (ESO‐FOSMC) is proposed in this study, with consideration of the strong nonlinear characteristics of a new electro‐hydraulic servo system with iso‐actuation balancing and positioning. By adopting the fractional order calculus theory, a fractional order proportional–integral–derivative (PID)‐based sliding mode surface was designed, which has the ability to obtain an equivalent positioning control with fractional order kinetic characteristics. By introducing the integral term into the sliding mode surface, it was found to be beneficial in reducing the steady‐state errors, as well as improving the precision of the control system. Also, by using the fractional order calculus to replace the integral calculus, the form of the convergence is improved; the system transfer of energy is slowed down; and the chattering of the system is greatly weakened. The extended state observer was designed to observe the real‐time disturbances, and also to generate the compensation control commands which are added to the FOSMC to achieve the dynamic compensation. By means of numerical simulations, the dynamic and static characteristics of the sliding mode control system were compared with those of the FOSMC and ESO‐FOSMC. The experimental results show that the ESO‐FOSMC system could effectively restrain the external disturbances and achieve higher control precision, as well as better control quantity without chattering. The semi‐physical simulations based experimental tests also demonstrated that the proposed ESO‐FOSMC outperformed the FOSMC in terms of system robustness and control precision, which could have a stable control of the gun system quickly and accurately.  相似文献   

8.
High‐order sliding mode control techniques are proposed for uncertain nonlinear SISO systems with bounded uncertainties based on two different terminal sliding mode approaches. The tracking error of the output converges to zero in finite time by designing a terminal sliding mode controller. In addition, the adaptive control method is employed to identify bounded uncertainties for eliminating the requirement of boundaries needed in the conventional design. The controllers are derived using Lyapunov theory, so the stability of the closed‐loop system is guaranteed. In the first technique, the developed procedure removes the reaching phase of sliding mode and realizes global robustness. The proposed algorithms ensure establishment of high‐order sliding mode. An illustrative example of a car control demonstrates effectiveness of the presented designs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
针对Terminal滑模控制到达阶段鲁棒性不强的问题,提出了时变Terminal滑模控制方法。分析Terminal滑模面的设计参数对系统性能的影响,提出一种非线性时变Terminal滑模面的设计方法。为了消除多输入多输出(MIMO)非线性系统的不确定,构建动态干扰观测器系统,根据干扰观测误差在线调节参数,从而在线逼近外部干扰,证明了逼近误差一致最终有界。采用倒立摆系统进行仿真验证,提出的自适应时变Terminal滑模控制方法比传统的PID控制镇定时间缩短80%,且无超调。仿真结果表明,所提方法可以用于MIMO非线性系统的控制。  相似文献   

10.
An improved continuous sliding mode control algorithm is proposed for a flexible air‐breathing hypersonic vehicle (FAHV), including nonsingular fast fixed‐time sliding surface (NFFS) and dual‐layer adaptive continuous twisting reaching law (DACTL). Firstly, the nonlinear control‐oriented model of FAHV is processed using input/output feedback linearization method with the significant flexible effects modeling as unknown matched disturbances. Secondly, a novel NFFS is improved from conventional fixed‐time sliding surface by adjusting power exponent to accelerate convergence rate. In the meanwhile, in order to avoid singularity aroused by fractional power term, an exponential convergent sliding surface is switched when tracking error approaches zero. Thirdly, a DACTL is proposed to realize finite‐time convergence of sliding mode variable with higher convergence precision and less chattering. Dual‐layer adaptive law is utilized to adjust the gain in DACTL based on equivalent control concept so as to enhance robustness automatically and avoid overestimation of control gain. Meanwhile, disturbances can be compensated without knowledge of Lipschitz constants. Ultimately, simulations on longitudinal control of FAHV demonstrate the control algorithm proposed is superior to conventional quasi‐continuous sliding mode controller in the aspect of convergence accuracy and chattering suppression.  相似文献   

11.
This study investigates a finite‐time fault‐tolerant control scheme for a class of non‐affine nonlinear system with actuator faults and unknown disturbances. A global approximation method is applied to non‐affine nonlinear system to convert it into an affine‐like expression with accuracy. An adaptive terminal sliding mode disturbance observer is proposed to estimate unknown compound disturbances in finite time, including external disturbances and system uncertainties, which enhances system robustness. Controllers based on finite‐time Lyapunov theory are designed to force tracking errors to zero in finite time. Simulation results demonstrate the effectiveness of proposed method.  相似文献   

12.
This paper presents a fast terminal sliding‐mode tracking control for a class of uncertain nonlinear systems with unknown parameters and system states combined with time‐varying disturbances. Fast terminal sliding‐mode finite‐time tracking systems based on differential evolution algorithms incorporate an integral chain differentiator (ICD) to feedback systems for the estimation of the unknown system states. The differential evolution optimization algorithm using ICD is also applied to a tracking controller, which provides unknown parametric estimation in the limitation of unknown system states for trajectory tracking. The ICD in the tracking systems strengthens the tracking controller robustness for the disturbances by filtering noises. As a powerful finite‐time control effort, the fast terminal sliding‐mode tracking control guarantees that all tracking errors rapidly converge to the origin. The effectiveness of the proposed approach is verified via simulations, and the results exhibit high‐precision output tracking performance in uncertain nonlinear systems.  相似文献   

13.
For uncertain time‐delay systems with mismatch disturbances, this paper presented an integral sliding mode control algorithm using output information only. An integral sliding surface is comprised of output signals and an auxiliary full‐order compensator. The designed output feedback sliding mode controller can locally satisfy the reaching and sliding condition and maintain the system on the sliding surface from the initial moment. Since the system is in the sliding mode and two specific algebraic Riccati inequalities are established, the proposed algorithm can guarantee the stability of the closed‐loop system and satisfy the property of disturbance attenuation. Moreover, the design parameters of the controller and compensator can be simultaneously determined by solutions to two algebraic Riccati inequalities. Finally, a numerical example illustrates the applicability of the proposed scheme. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
This paper investigates the problem of consensus tracking control for second‐order multi‐agent systems in the presence of uncertain dynamics and bounded external disturbances. The communication ?ow among neighbor agents is described by an undirected connected graph. A fast terminal sliding manifold based on lumped state errors that include absolute and relative state errors is proposed, and then a distributed finite‐time consensus tracking controller is developed by using terminal sliding mode and Chebyshev neural networks. In the proposed control scheme, Chebyshev neural networks are used as universal approximators to learn unknown nonlinear functions in the agent dynamics online, and a robust control term using the hyperbolic tangent function is applied to counteract neural‐network approximation errors and external disturbances, which makes the proposed controller be continuous and hence chattering‐free. Meanwhile, a smooth projection algorithm is employed to guarantee that estimated parameters remain within some known bounded sets. Furthermore, the proposed control scheme for each agent only employs the information of its neighbor agents and guarantees a group of agents to track a time‐varying reference trajectory even when the reference signals are available to only a subset of the group members. Most importantly, finite‐time stability in both the reaching phase and the sliding phase is guaranteed by a Lyapunov‐based approach. Finally, numerical simulations are presented to demonstrate the performance of the proposed controller and show that the proposed controller exceeds to a linear hyperplane‐based sliding mode controller. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, an ?? sliding mode control (SMC) problem is studied for a class of discrete‐time nonlinear stochastic systems with multiple data packet losses. The phenomenon of data packet losses, which is assumed to occur in a random way, is taken into consideration in the process of data transmission through both the state‐feedback loop and the measurement output. The probability for the data packet loss for each individual state variable is governed by a corresponding individual random variable satisfying a certain probabilistic distribution over the interval [0 1]. The discrete‐time system considered is also subject to norm‐bounded parameter uncertainties and external nonlinear disturbances, which enter the system state equation in both matched and unmatched ways. A novel stochastic discrete‐time switching function is proposed to facilitate the sliding mode controller design. Sufficient conditions are derived by means of the linear matrix inequality (LMI) approach. It is shown that the system dynamics in the specified sliding surface is exponentially stable in the mean square with a prescribed ?? noise attenuation level if an LMI with an equality constraint is feasible. A discrete‐time SMC controller is designed capable of guaranteeing the discrete‐time sliding mode reaching condition of the specified sliding surface with probability 1. Finally, a simulation example is given to show the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a novel robust sliding mode learning control scheme is developed for a class of non‐minimum phase nonlinear systems with uncertain dynamics. It is shown that the proposed sliding mode learning controller, designed based on the most recent information of the stability status of the closed‐loop system, is capable of adjusting the control signal to drive the sliding variable to reach the sliding surface in finite time and remain on it thereafter. The closed‐loop dynamics including both observable and non‐observable ones are then guaranteed to asymptotically converge to zero in the sliding mode. The developed learning control method possesses many appealing features including chattering‐free characteristic, strong robustness with respect to uncertainties. More importantly, the prior information of the bounds of uncertainties is no longer required in designing the controller. Numerical examples are presented in comparison with the conventional sliding mode control and backstepping control approaches to illustrate the effectiveness of the proposed control methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper addresses the problem of designing a dynamic output feedback sliding mode control algorithm for linear MIMO systems with mismatched parameter uncertainties along with disturbances and matched nonlinear perturbations. Once the system is in the sliding mode, the proposed output‐dependent integral sliding surface can robustly stabilize the closed‐loop system and obtain the desired system performance. Two types of mismatched disturbances are considered and their effects on the sliding mode are explored. By introducing an additional dynamics into the controller design, the developed control law can guarantee that the system globally reaches and is maintained on the sliding surface in finite time. Finally, the feasibility of the proposed method is illustrated by numerical examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This paper explores the probability problems on terminal sliding mode control of second‐order nonlinear continuous Markovian jump systems. An equivalent control based terminal sliding mode control scheme is proposed that can guarantee the systems' finite time mean‐square stability. By introducing a multi‐step transition conditional probability, the novel reaching and sliding probabilities are derived for the situations where the control force is not strong enough. This indicates that the reaching and sliding probabilities are both monotonically bounded non‐decreasing non‐negative piecewise right‐continuous functions of the control parameter. A numerical example is given to show the feasibility of the theoretical results.  相似文献   

19.
In this paper, the disturbance observer–based chattering‐free discrete‐time sliding mode control (DSMC) approach is proposed for systems with external disturbances. The proposed disturbance observer, which makes full use of the state and input information at the current and last steps, improves the estimation accuracy and achieves accurate compensation for disturbances. Then, with the help of disturbance observer, a new reaching law, which contains not only a nonsmooth term with a dynamically adjusted gain parameter but also a second order difference of the disturbance, is proposed to reduce the range of the quasi‐sliding mode band and eliminate chattering. The proposed DSMC approach realizes the active disturbance rejection and strong robustness. Finally, a simulation example is presented to verify the effectiveness of the proposed method.  相似文献   

20.
Anti‐disturbance control and estimation problem are investigated for nonlinear system subject to multi‐source disturbances. The disturbances classified model is proposed based on the error and noise analysis of priori knowledge. The disturbance observers are constructed separately from the controller design to estimate the disturbance with partial known information. By integrating disturbance‐observer‐based control with discrete‐time sliding‐mode control (DSMC), a novel type of composite stratified anti‐disturbance control scheme is presented for a class of multiple‐input–multiple‐output discrete‐time systems with known and unknown nonlinear dynamics, respectively. Simulations for a flight control system are given to demonstrate the effectiveness of the results compared with the previous schemes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号