首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article presents a low‐profile broadband antenna. The E‐shaped metal cells are utilized on the top layer, which is excited by the microstrip line through the coupling slot in the ground plane. The characteristics of the E‐shaped patch cell and antenna are extensively investigated and presented. Dual resonances with close proximity are obtained to realize wideband impedance matching. An attractive feature is found that the bandwidth of the antenna exhibits good correlation with the inductance. The interesting analysis is presented by directly loading inductors to the antenna, and the bandwidth shrinks quickly with larger inductance loaded. Therefore, the antenna proposed in this article has good potential in bandwidth tuning applications. A typical bandwidth from 5.1 to 6.7 GHz is achieved by the fabricated antenna with a maximum measured gain of 10.4 dBi. Meanwhile, the antenna remains a low profile of 0.09 λ g.  相似文献   

2.
In this study, a novel printed wide‐slot antenna for wideband applications is presented. The designed antenna consists of four merged elliptical wide‐slots (EWSs) of different dimensions in the ground plane. An open‐ended microstrip line having a characteristic impedance of 50 Ω is used to excite the EWS. Each EWS corresponds to the different frequency of operation and hence when merged together give a wideband response. The fabricated prototype of the designed antenna shows the 10 dB return loss bandwidth (RLBW) of about 157.72% ranging from 2.21 to 18.7 GHz. The peak gain varies from 0.1 to 6.5 dB within the RLBW is reported. An almost constant group delay, low variation (<?40 dB) in the transfer function S21 and linear phase variation for both side by side and face to face orientations of the designed antenna shows its applicability for wideband applications. The electrical dimensions of about 0.176λ L × 0.162λ L (where λ L is the lowest operating wavelength) give rise to the bandwidth dimension ratio of about 5505 which is highest among the antenna structures reported in the literature. The measured results are found in good concordance with the results obtained from numerical simulations.  相似文献   

3.
A metasurface‐based low‐profile crossed dipole antenna with wide circularly polarized bandwidth for 2.45 GHz ISM band wireless communications is proposed and fabricated in this article. Consisting of four slit‐loaded rectangular patches, the double‐sided printing crossed dipoles are fed by a pair of vacant‐quarter printed rings which circularly polarized (CP) radiation could be generated. With slits loaded, by properly combining the fundamental mode of the two inverted L‐shaped dipole, the slot mode and extra resonance generated by the AMC surface, a wideband circularly polarized operation can be obtained. After optimization, the final design with an overall size of 0.44λ0 × 0.44λ0 × 0.1448λ0 at 2.4 GHz had measured a 31.6% (2–2.75 GHz) impedance bandwidth and 3 dB axial ratio bandwidths of measured were 23.2% (2.1–2.65 GHz), respectively. In addition, the antenna performed a small gain variation (7.0–7.5 dBic) and a front‐to‐back ratio (FBR) of over 25 dB across the whole CP region.  相似文献   

4.
A simple design of circularly polarized slot‐patch antenna array with broadband operation and compact size is presented in this article. The antenna element consists of a circular slot and a semicircular patch, which are etched on both sides of a substrate. For the gain and axial ratio (AR) bandwidth enhancement, its array antennas are implemented in a 2 × 2 arrangement and fed by a sequential‐phase feeding network. The final 2 × 2 antenna array prototype with compact lateral dimension of 0.8λL × 0.8λL (λL is the lowest frequency within AR bandwidth) yielded a measured impedance bandwidth of 103.83% (2.76‐8.72 GHz) and a measured AR bandwidth of 94.62% (2.45‐6.85 GHz). The peak gain values within the AR bandwidth are from 2.85 to 8.71 dBi. A good agreement between the simulated and measured results is achieved. This antenna array is suitable for multiservice wireless systems covering WiMAX, WLAN and C‐band applications such as satellite communications.  相似文献   

5.
The purpose of this study is to investigate the application of a polarization conversion meatasurface for constructing a low profile, wideband circularly polarized slot antenna, which consists of a new Polarization conversion metasurface (PCM)‐based square‐corner‐cut artificial magnetic conductor cell structure and a feeding slot antenna. PCM possesses two frequency points of polarization rotation (PR), produced by appropriately adjusting width between the two triangular metallic patches. A 39.3% (4.7‐7 GHz) of big PR band was realized through the combination of two neighboring PR frequency points. The impedance bandwidth of PCM based patch antenna was measured to be 43.5% (4.5‐7 GHz), with 17.2% (5.3‐6.3 GHz) of 3 dB axial ratio (AR) bandwidth and 0.045λ0 of profile. It also generated 7.3 dBic of high broadside gain in operational bandwidth.  相似文献   

6.
This study investigates the use of a polarization rotation reflective surface (PRRS) to construct a wideband, wide‐beam, low‐profile circularly polarized (CP) patch antenna. The device is composed of a feeding monopole antenna and a novel PRRS‐based dual‐patch artificial magnetic conductor (AMC) cell structure. The PRRS has two polarization rotation (PR) frequency points, generated by properly adjusting the width between square and L‐shaped metallic patches. A large PR band of 35.5% (5.1‐7.3 GHz) was achieved by combining two adjacent PR frequency points. The PRRS‐based patch antenna impedance bandwidth was measured to be 28.6% (5.1‐6.35 GHz), with a 3 dB axial ratio (AR) bandwidth of 21.8% (4.8‐6.4 GHz) and a profile of 0.045λ0. Additionally, the proposed antenna exhibited the largest AR beamwidth (to our knowledge) of 175° and 128° in the xoz and yoz planes, respectively. It also produced a high broadside gain of 6.7 dBic within the operational bandwidth.  相似文献   

7.
A novel wideband crossed magneto‐electric (ME) dipole for circularly polarized (CP) radiation is proposed in this paper. The proposed antenna consists of a crossed dipole, four parasitic elements, and two pairs of folding metal plates (magnetic dipole). The parasitic elements and magnetic dipole are employed to enhance the axial ratio bandwidth (ARBW). The antenna size is 0.51λ0 × 0.51λ0 × 0.33λ0, where λ0 is the corresponding free‐space wavelength at the center frequency. A prototype antenna is fabricated and tested. The experiment results depict that the impedance bandwidth (IBW) for voltage standing wave ratio < 2 is 79.2% (2.5‐5.78 GHz) and the 3‐dB axial ratio bandwidth (ARBW) is 72.5% (2.7‐5.77 GHz). At the same time, good CP characteristics and stable symmetrical radiation patterns can be obtained across the operation bandwidth.  相似文献   

8.
This work explains the design and analysis of a triple‐band electrically small (ka = 0.56 < 1) zeroth‐order resonating (ZOR) antenna with wideband circular polarization (CP) characteristics. The antenna compactness is obtained due to ZOR frequency of composite right/left‐handed (CRLH) transmission line (TL) and wideband CP radiation are achieved due to the introduction of single‐split ring resonator and asymmetric coplanar waveguide fed ground plane. The proposed antenna obtains an overall electrical size including the ground plane of 0.124 λ0 × 0.131 λ0 × 0.005 λ0 at 1.58 GHz and physical dimension of 23.7 × 25 × 1 mm3 are achieved. The antenna provides a size reduction of 44.95% compared to a conventional monopole antenna. The novelty behind the ohm‐shaped capacitor is the generation of extra miniaturization with better antenna compactness. The antenna provides dual‐polarized radiation pattern with linear polarization radiation at 1.58 and 3.54 GHz, wideband CP radiation at 5.8 GHz. The antenna measured results shows good impedance bandwidth of 5%, 6.21%, and 57.5% for the three bands centered at 1.58, 3.54, and 5.8 GHz with a wider axial ratio bandwidth (ARBW) of 25.47% is obtained in the third band. The antenna provides a higher level of compactness, wider ARBW, good radiation efficiency, and wider S11 bandwidth. Hence, the proposed antenna is suitable for use in GPS L1 band (1.565‐1.585 GHz), WiMAX 3.5 GHz (3.4‐3.8 GHz) GHz, WLAN 5.2/5.8 GHz (5.15‐5.825 GHz), and C‐band (4‐8 GHz) wireless application systems.  相似文献   

9.
This article presents a simple design of circularly polarized (CP) antenna with low profile and wideband operation characteristics. To achieve these desirable features, a truncated corner squared patch is chosen as primary radiating source and surrounded by periodic metallic plates for bandwidth enhancement. Notably, all the radiating elements are designed on a single layer of substrate using printed circuit techniques, which significantly reduces the design complexity. The final prototype with overall size of 0.60λo × 0.60λo × 0.05λo (λo is free‐space wavelength at the center operating frequency) was fabricated and tested. Measured results show that the proposed antenna has wide operation bandwidth of 19.7% (5.1‐6.2 GHz). Additionally, broadside gain ranging from 5.0 to 6.9 dBic is also attained within the operating band. In comparison with the other reported antennas in literature, the proposed one has the simplest design architecture with competitive operating bandwidth.  相似文献   

10.
In this paper, a novel broadband dual‐polarization patch antenna is proposed. Antisymmetric Γ feeding network is applied to excite the radiating patch etched on the upper side of the horizontal substrate, which could minimize the undesired radiation from the probe and extend the impedance bandwidth. For verifying the proposed approach, a prototype is fabricated and measured, the simulated and measured results show the antenna has a wide impedance bandwidth of 48% (1.66‐2.71 GHz) for S11 < ?10 dB, as well as stable radiation gain around 9.5 dBi with low cross‐polarization. In addition, the total height of the antenna is only 0.17 λ0 ( λ0 is the free space wavelength of central frequency) and high port‐to‐port isolation is better than 30 dB. The characteristics of the proposed antenna illustrate it can be an indication for a micro base station in the mobile communication system.  相似文献   

11.
In this article, a novel substrate integrated low‐profile dual‐band magneto‐electric (ME) dipole antenna is proposed. The entire antenna is constructed by four‐layer printed circuit boards (PCBs). Consequently, the height of the proposed antenna is decreased from 0.25λ0 to 0.11λ00 is the free‐space wavelength at 5.5 GHz). By introducing rectangular patches with different sizes as electric dipoles, dual operating bands are achieved. Meanwhile, for the purpose of improving the impedance matching at the lower frequency band, a pair of complementary split‐ring resonators (CSRRs) is etched on the larger rectangular patches. Moreover, the short walls composed of plated through holes operate as a magnetic dipole. The antenna is fed by an equivalent wideband microstrip‐to‐parallel stripline balun. The results show that the antenna obtains dual bandwidths of 4.31‐4.71 GHz (8.8%) and 5.07‐5.89 GHz (14.9%) with VSWR <2, which can be applied for C‐band and 5G WiFi. Over the dual operating bands, stable gain and unidirectional radiation patterns with low polarization and low back lobe are also obtained.  相似文献   

12.
A compact wideband circularly polarized (CP) horn antenna with slot‐coupled feeding structure at Ku band for satellite communication is devised. The proposed design is based on a square aperture horn antenna with two orthogonal ridges, which is fed by nonuniform curved slot along the diagonal of the horn on the bottom cavity. And in order to improve the impedance matching, a staircase typed ridge is connected the feeding probe as a matching network. Moreover, two orthogonal ridges are excited with a tapered slot coupled by the staircase ridges via feeding probe. Wideband CP performance is achieved with an overall physical dimension of 9 mm × 9 mm × 14 mm (0.045λ0 × 0.045λ0 × 0.07λ0 at frequency of 15 GHz). It is experimentally demonstrated that the proposed antenna achieves: a wide 10‐dB return loss bandwidth of about 2.4 GHz, a 3‐dB axial ratio bandwidth of 1 GHz, and a peak gain of 6.5 dBi.  相似文献   

13.
In the present study, ultra‐wide band antenna attachable on unmanned aerial vehicle (UAV) surfaces usable as signal detection antenna in various bands was designed, and the practicality of the developed antenna was verified by attaching the antenna to a UAV and measuring the performance. The antenna suggested in this article was manufactured by forming a hemispheric conductor having the shape of a baseball seam on the ground and satisfying a self‐complementary through an image theory. This Hemispheric shape can reduce a drag and risk of breakage. The diameter of the antenna is 400 mm (0.L and λL is 0.3 GHz.), the height is 200 mm (0.2λL), and the ground size is 800 mm (0.8λL) × 800 mm (0.8λL). The designed antenna showed an ultra‐wide band property as it was matched to a band from 300 MHz to 10 GHz. After being attached to the bottom of a 7.3:1 scale UAV, the antenna showed matching properties from 1.85 to 10 GHz above and maintained a monopole pattern in all directions and in a bandwidth. To author's knowledge, the antenna was proper to using as a signal detection antenna which need wide bandwidth, conical pattern, drag reduction and reduced risk of breakage.  相似文献   

14.
A low‐profile wideband dual‐polarized antenna with high gain, low gain variations, and low cross‐polarization for the fifth generation (5G) indoor distribution system is proposed. By using circular‐thread vase‐shaped structure, a low profile of 0.23λ0 (λ0 is the free‐space wavelength at the starting frequency) as well as low gain variation feature can be achieved by the vertically polarized (VP) radiating element. An eight‐way power divider network is employed to feed the horizontally polarized (HP) dipoles so that wideband performance is obtained. Here, eight pairs of arc‐shaped parasitic strips are used to broaden the bandwidth, and eight pairs of director elements are introduced to enhance the gain and reduce the gain variations. In addition, the protruded stubs that are extended from the circular ground plane will help to reduce the cross polarization in the VP direction. Measured results show that a bandwidth of 46.5% (3.3‐5.3 GHz) (S11 < ?10 dB) with a gain of 0.85 ± 0.35 dBi, and another bandwidth of 85.0% (2.5‐6.2 GHz) with a gain of 4.75 ± 1.75 dBi can be realized in the HP and VP directions, respectively. Furthermore, high isolation (>27 dB) and low cross polarization (<?24 dB) can also be attained. Therefore, the proposed antenna is a good candidate for 5G indoor distributed system.  相似文献   

15.
A wideband horizontally polarized (HP) omnidirectional antenna is constructed and experimented in this article. The antenna consists of four composite dipoles forming a circular array in the azimuth plane and four pairs of parallel strip lines as impedance transformer networks. Two kinds of dipoles compose the composite dipole to achieve a wideband operation. By utilizing the composite dipole, four resonances can be simultaneously excited and manipulated to increase the bandwidth. A prototype is manufactured to validate the method. The dimensions of the antenna are just 0.62λ0 × 0.62λ0 × 0.03λ0 (λ0 is the free‐space wavelength at center frequency). The measured results show that the presented antenna has a impedance bandwidth of 58.6% (1.63–2.98 GHz) for VSWR ≤2. The gain variations are less than 0.6 dB at the azimuth plane in the operating band. Meanwhile, the cross‐polarization is less than 20 dB and the peak gain reaches 1.7 dBi among in the band. These advantages of the antenna make it suitable for 4G mobile communication applications.  相似文献   

16.
In this article a novel wide‐band artificial magnetic conductor (AMC) based wideband directional antenna is presented for ultra‐wideband (UWB) applications. The proposed novel cross‐slot AMC (CSAMC) achieves wide ±90° reflection phase bandwidth of 4.07 GHz (44.69%) and is used as a reflector. The overall antenna structure is designed with 4 × 4 CSAMC unit cell array and has very compact size of (0.584λ0 × 0.584λ0). The proposed structure improves the radiation properties and exhibits 91.5% (3.13‐8.41 GHz) impedance bandwidth (VSWR ≤2). Additionally, it results in significant improvement in gain and front to back ratio. The proposed antenna is fabricated and its measured performance is in good agreement with simulation results.  相似文献   

17.
In this article, a high‐gain dual‐polarized antenna with band‐rejection capability for ultrawideband (UWB) applications is proposed. Tapered dipoles are chosen as a primary radiator to achieve UWB operation and it is reflected by a metallic cavity reflector for high gain radiation. A notch at WLAN band is realized by etching a set of four bent slots in the radiating elements. The measured results demonstrate that the proposed design with overall dimensions of 0.69λ L × 0.69λ L × 0.16λ L (λ L is free‐space wavelength at the lowest operating frequency) has operating bandwidth of 95.1% (3.2‐9.0 GHz) and the rejected frequency band from 5.0 to 5.9 GHz. Additionally, good unidirectional radiation patterns with a broadside gain from 8.1 to 11.5 dBi and radiation efficiency of better than 90% are also achieved.  相似文献   

18.
In this article, a novel inverted L‐shaped microstrip‐fed wideband circularly polarized (CP) modified square‐slot antenna is designed. By cutting a pair of triangle chamfers and introducing a pair of triangle patches at the square‐slot, the antenna achieves a wideband CP radiation. Moreover, CP performance of the antenna can also be remarkably enhanced by protruding an L‐shaped strip and embedding a tuning rectangle slot into the slot ground. The measured results demonstrate that the axial‐ratio bandwidth for AR < 3 is 75.1% (from 4.45 to 9.8 GHz) and the impedance bandwidth (|S11| < ?10 dB) reaches 65.8% (from 4.95 to 9.8 GHz). In addition, surface current studies are performed to illustrate the operating mechanism of CP operation, and the antenna has bidirectional radiation characteristics with an average gain of ~4 dBic within the CP band.  相似文献   

19.
A wideband H‐plane horn antenna based on quasi‐corrugated substrate integrated waveguide (SIW) technology with a very low profile is presented in this article. Open‐circuited microstrip stubs are applied to create electric sidewalls of the quasi‐corrugated SIW structure. The quasi‐corrugated SIW H‐plane horn antenna shows high performance and simple structure. A specify‐shaped horn aperture is utilized, so that the poor impedance matching owing to the structure restriction can be smoothened. The structure is simulated by ANSYS HFSS and a prototype is fabricated. The measured results match well with the simulated ones. An enhanced impedance bandwidth ranging from 5.3 GHz to 19 GHz (VSWR < 2.5) is achieved. The presented antenna also brings out stable radiation beam over the same frequency band.  相似文献   

20.
A dual‐mode circularly polarized compact antenna with integrated left‐hand and right‐hand circular polarization (LHCP and RHCP) is presented in this work. A multilayer arrangement of a square patch and square ring structure with an irregular transmission line is analyzed for dual‐band, dual‐CP operation. To realize dual mode propagation the proposed structure is excited using electromagnetic coupling technique. Succeeding proximity feeding with T‐stub match is analyzed, which conveys impedance bandwidth of 180 and 300 MHz within |S11| < ?10 dB at 3.5 and 5.5 GHz. The designed CP elements is suitably arranged with feed line for generating two orthogonal polarization of equal amplitude and a 90° phase difference at both the resonant modes (TM10 and TM01). Alterable LHCP and RHCP performance is realized by altering the compensated position and peculiar angle. Having both LHCP and RHCP polarization this design shows polarization insensitive characteristic. Each LHCP and RHCP antenna element accomplished a 3‐dB AR of 70 and 120 MHz with a gain up to 6 dBi. With a low profile of 0.27λ0 × 0.27λ0 × 0.04λ0, the CP antenna is fabricated, and the performance is validated through experimental analysis. With all the viable characteristics, the antenna is proposed for Wi‐MAX/WLAN communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号