首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 0.18‐μm CMOS low‐noise amplifier (LNA) operating over the entire ultra‐wideband (UWB) frequency range of 3.1–10.6 GHz, has been designed, fabricated, and tested. The UWB LNA achieves the measured power gain of 7.5 ± 2.5 dB, minimum input matching of ?8 dB, noise figure from 3.9 to 6.3 dB, and IIP3 from ?8 to ?1.9 dBm, while consuming only 9 mW over 3–10 GHz. It occupies only 0.55 × 0.4 mm2 without RF and DC pads. The design uses only two on‐chip inductors, one of which is such small that could be replaced by a bonding wire. The gain, noise figure, and matching of the amplifier are also analyzed. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE , 2011.  相似文献   

2.
An ultra‐wideband compact bandpass filter (BPF) with configurable stopband by tuning transmission zeroes is proposed in this paper. The ultra‐wideband bandpass response is based on a diamond‐shape resonator consisting of a pair of broadside coupled diamond‐shape microstrip lines, within which a diamond shape defected ground structure (DGS) is etched in the middle. Flexible transmission zeros realized by open and short stubs can be easily adjusted to improve band selectivity and harmonic suppression. Measurement result shows that the dedicated device has a 3 dB fractional bandwidth of 148% (0.94‐6.36 GHz) with 20 dB rejection stopband from 6.87 to 9.7 GHz (77.5%) which agrees good with the simulate performance. The overall size of the proposed BPF is 0.27 λg × 0.23 λg.  相似文献   

3.
In this article, a novel wideband metal‐only transmitarray based on 1‐bit polarization rotation element is proposed. First, a novel wideband polarization rotation element is designed, which consists of four metallic layers without any substrate layers. The element can be used to rotate polarization of the transmission wave by 90° with respect to that of the incident wave. The element and its mirror image can provide 0° and 180° phase shifts with 1‐bit phase quantization in the 9.2 to 11.2 GHz band with more than 80% polarization conversion rate. Then, by using the proposed element, a 21 × 21‐element transmitarray with a standard pyramidal horn feed is designed and fabricated. The measured results show that the transmitarray achieves 16.8% 1‐dB gain bandwidth with a peak gain of 21.6 dBi. Its cross‐polarization and side‐lobe levels are below ?20 and ?10 dB, respectively, in the operating band. The measured results agree well with the simulation ones, validating effectiveness of the transmitarray design method.  相似文献   

4.
A very compact ultra‐wideband (UWB) slot antenna with three L‐shaped slots for notched‐band characteristics is presented in this article. The antenna is designed and fabricated using a new stepped slot with different size, integrated in the ground plane, and excited by a 50 Ω microstrip transmission line. The stepped slot is used to minimize the dimensions of the antenna and to achieve an impedance bandwidth between 2.65 and 11.05 GHz with voltage standing wave ratio (VSWR) less than 2. The length of the stepped slot is equal to a quarter wavelength to create a resonance in the desired frequency. Three L‐shaped slots with various sizes are etched in the ground plane to reject three frequency bands in C‐band (3.7‐4.2 GHz), WLAN (5.15‐5.825 GHz), and X‐band (7.25‐7.75 GHz), respectively. The notched‐band frequency can be controlled by changing the length of the L‐shaped slot. The proposed antenna has a very small size (20.25 × 8 × 1.27 mm3) compared with previous works. The measured and simulated results show a good agreement in terms of radiation pattern and impedance matching.  相似文献   

5.
A technique to design wideband coplanar waveguide bandpass filters is reported. The filter is realized by etching a slot on the ground plane around a gap on its central conductor and modifying the gap in the form of parallel lines. It is shown that the 3‐dB fractional bandwidth of the filter can be varied from 60 to 110% by tuning the size of the slot aperture and the length of the parallel lines. Equivalent circuit and design steps are presented. Implementation area of the filter having passband 3.2–10.5 GHz is 0.90 λg × 0.26 λg, λg being the guided wavelength at 6.85 GHz while 20‐dB stopband is at least up to 18 GHz. Insertion loss is less than 2 dB up to 9 GHz. Area of the filter having fractional bandwidth 60% at 3.85 GHz is 0.67 λg × 0.11 λg. Passband loss is within 1.5 and 20 dB stopband is at least up to 12 GHz. The proposed filter structure is very simple to integrate, and the ultra‐wideband filter is used to generate an ultra‐wideband pulse as defined by the US Federal Communication Commission. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.  相似文献   

6.
This article presents the miniaturization of a planar half elliptical ultra‐wideband dipole. By simply placing a concaved arm in close proximity to the original structure, a 45% area reduction in terms of electrical wavelength can be achieved. The proposed antenna exhibits a wide measured return loss bandwidth of 2 to 9.9 GHz and omnidirectional radiation patterns across the band. The design features a footprint size of 41.5 × 41.5 mm2 and an electrical size of 0.28λ × 0.28λ at 2 GHz. Compared with some previously reported planar designs, the proposed antenna presents a more compact electrical dimension and better or comparable bandwidth. Critical geometric parameters of the structure, particularly the concaved arm, are investigated to understand the miniaturization and operating mechanism of the design. Satisfactory correlation between the simulation and measurement data is obtained.  相似文献   

7.
A modified design approach for compact ultra‐wideband microstrip filters with cascaded/folded stepped‐impedance resonators is described. The key feature of the proposed method is to facilitate stronger coupling between stepped‐impedance resonators and, at the same time, eliminate the requirement of extremely small gaps in coupled‐line sections, as found in traditional designs. Simulations and measurements demonstrate that the filters designed with this technique exhibit good reflection, insertion‐loss, and group‐delay performance within the 3.1–10.6 GHz band. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE 2010.  相似文献   

8.
This paper presents a novel ultra‐wideband (UWB) antenna printed on a 70 μm thick flexible substrate. The proposed antenna consists of a hybrid‐shaped patch fed by coplanar waveguide (CPW). The ground planes on opposite sides of the feeding line have different height to improve antenna bandwidth. Simulation shows that the proposed antenna maintain wide bandwidth when changing its substrate's thickness and dielectric constant, as well as bending the antenna on a cylindrical foam. The proposed antenna is fabricated in laboratory with a simple and low‐cost wet printed circuit board (PCB) etching technique. Measured bandwidths cover 3.06 to 13.58, 2.8 to 13.55, and 3.1 to 12.8 GHz in cases of flat state and bent with radii of 20 and 10 mm, respectively. Measured radiation patterns show the antenna is omnidirectional in flat and bent cases.  相似文献   

9.
In this article, a compact double‐layer microstrip ultra‐wideband (UWB) filtering power divider with high selectivity and isolation is proposed. The filtering power divider consists of a multimode resonator at the top layer coupled with a pair of branch lines at the bottom through a slotline in the middle ground. The slotline provides strong coupling between the two layers and equally distributes the power to two branch lines. The resistor loaded about a quarter‐wavelength away from the slotline achieves high isolation within UWB range. The UWB filtering properties with controllable transmission poles and zeros as well as power splitting with enhanced isolation have been analyzed. The adjustable transmission zeros of the filter unit enables the bandwidth control of the filtering power divider. Finally, a UWB filtering power divider operating at 3.1 to 10.6 GHz has been designed, fabricated, and measured. It achieves a compact size of only 26 × 28 mm2, high isolation about 20 dB, and good out‐of‐band suppression of 40 dB.  相似文献   

10.
This article explores the design and analysis of a novel ultra‐wideband (UWB) antenna for body‐centric applications. The designed antenna consists of circular ring structured radiating element with 24 spokes, which resembles the shape of Ashoka chakra (Indian National flag emblem). The antenna placed on the semi flexible RT/Duroid 5880 with dielectric constant of 2.2 and occupying the dimension of 30 × 25 × 0.8 mm3. The present design aims at optimizing the antenna structure to cater UWB operating spectrum (3.1‐10.6 GHz) with a novel patch shape, which looks like the Ashoka chakra. The proposed antenna is analyzed by placing on three‐layered human phantom model and examined on head, arm at three of its operating frequencies. The maximum specific absorption rate (SAR) is found to be 1.23 W/kg and 1.29 W/kg when computed at arm and head of the human body respectively. The SAR values are observed under those conditions are satisfying the international safety standards such as FCC & IEEE C95.1:2005 & ICNIPR. Analysis of system savant (ANSYS Savant) radiation performance characteristics are also studied by placing the proposed antenna on virtual human body environment.  相似文献   

11.
A flower‐shaped ultra‐wideband fractal antenna is presented. It comprises a fourth iterative flower‐shaped radiator, asymmetrical stub‐loaded feeding line, and coplanar quarter elliptical ground planes. A wide operating band of 12.12 GHz (4.58‐16.7 GHz) for S 11 ≤ ? 10 dB is achieved along with an overall antenna footprint of 15.7 × 11.4 mm2. In addition, other desirable characteristics, that is, omnidirectional radiation patterns, peak gain upto 5 dB, and fidelity factor more than 75% are achieved. A good agreement exists between the simulation and measured results. The obtained results illustrate that this antenna has wide operating range and compact dimensions than available structures.  相似文献   

12.
A miniaturized ultra‐wideband (UWB) monopole antenna with reconfigurable multiple‐band notched performance is demonstrated. By modifying the shape of the patch and the ground plane, the UWB operation is achieved. The first and second band‐notches are respectively generated by etching a rectangular slot with open ends and a U‐shaped slot in the patch, and the third band‐notch is produced by loading a C‐shaped parasitic element beneath the patch. To realize the reconfigurable band‐notched functions, four PIN diodes are inserted in three band‐rejected structures. The antenna has a compact dimension of 30 mm × 26 mm. It can switch between a UWB state and several band‐notch states by alternating the states of the diodes. Also, good radiation patterns are obtained.  相似文献   

13.
A reconfigurable active frequency selective surface (AFSS) with ultra‐wideband (UWB) characteristics is presented in this article. The proposed AFSS consists of a periodic array of three metal layers and two dielectric layers. PIN diodes are arranged on the top and bottom metal layers which can rebuild the function of AFSS. The transmission bandwidth of the AFSS with OFF‐state diodes is 8 to 12.5 GHz with a fractional bandwidth of 44%, and the transmission coefficient of the FSS with ON‐state diodes is lower than ?10 dB from 2 to 18 GHz. Additionally, the AFSS is angular stable and polarization‐insensitive for both transverse electric and transverse magnetic polarizations. The simulation results show that the proposed AFSS is an effective candidate for radome applications.  相似文献   

14.
In this article, the method of least mean squares (LMS) is employed to design ultra‐wideband (UWB) filters with various input and output port impedances in 6‐18 GHz frequency range. Optimization process on the circuit dimensions is done by MATLAB and AWR microwave office softwares utilizing exact closed‐form relations for microstrip transmission lines and microstrip T‐junction discontinuities. The advantages of this method are its simplicity, fast design time, including impedance matching. Two design examples are depicted in the article. To validate the designed structures, the circuit model results are compared with full‐wave analysis and measurements. The first design example corresponds to equal source and load impedances. For this design, maximum measured transmission coefficient in the frequency range 5.9‐16.6 GHz is obtained as ?12 dB, upper out‐of‐band rejection around image frequency is better than ?17 dB and lower out‐of‐band rejection at 5 GHz is obtained better than ?30 dB. The second design example describes the case of unequal source and load impedances.  相似文献   

15.
Conventional ultra‐wideband low‐noise amplifiers require a flat gain over the entire 3.1–10.6 GHz bandwidth, which severely restraints the trade‐off spaces in low noise amplifier design. This article proposes a relaxed gain‐flatness requirement based on system level investigations. Considering the wireless transceiver front‐end with antenna and propagation channel, the unflat‐gain low‐noise amplifier with an incremental gain characteristic does not degrade the performance of overall system. As an alternative to its flat‐gain counterpart, the proposed unflat gain requirement tolerates gain ripple as large as 10 dB, which greatly eases the design challenges to low‐noise amplifier for ultra‐wideband wireless receivers. Two low‐noise amplifier examples are given to demonstrate the feasibility and design flexibility under the proposed gain‐flatness requirement. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007.  相似文献   

16.
A compact size of 40 × 40 mm2 ( λ0 × λ0 ) semi‐elliptical slotted ground structure (SESGS) directional ultra‐wideband (UWB) antenna is proposed for radar imaging applications. A vertical semi‐elliptical slot is inserted into ground and subsequently, an axis of semi‐ellipse is rotated diagonally (with 45°) in direction of the substrate. Axes of semi‐ellipse are optimized symmetrically around the circular patch to work antenna as a reflector. Furthermore, semi‐elliptical slot is rotated horizontally (with 90°) again to improve the impedance bandwidth. Proposed antenna achieves fractional bandwidth around 83% covering the UWB frequency range from 4.40 to 10.60 GHz (S11 < ?10 dB) having 4.5/6/7/8/9.3/10.2 GHz resonant frequencies. Also, antenna is capable to send low‐distortion Gaussian pulses with fidelity factor more than 95% in time‐domain. Measured gain and half power beam width (HPBW) are 6.1‐9.1 dBi and 44°‐29° in 4.40‐10.60 GHz band, respectively, which show an improvement of 1‐3 dBi in gain and half power beam‐width is reduced by 5°‐10° when compared with previously designed antennas. Experimental results show good agreement with CST simulation.  相似文献   

17.
In this endeavor, a new multiple‐input‐multiple‐output antenna with a sharp rejection at wireless local area network (WLAN) band is designed and practically examined for portable wireless ultra‐wideband applications. The intended diversity antenna possess a small size of 15 mm × 26 mm and two inverted L‐strip are loaded over the conventional rectangular patch antenna to form protrudent‐shaped radiator that acts as a radiating element. The sharp band‐rejection capability at WLAN is established by incising the L‐shaped slits at the decoupling structure. More than ?21 dB isolation is accomplished for the complete working band (ie, 2.87 ‐17 GHz). Degradation in the antenna efficiency at the center frequency of band rejection corroborates the good interference rejection capability. The working capabilities of the intended antenna are tested by using the isolation between the ports, total efficiency, gain, envelope correlation coefficient, radiation pattern, mean effective gain, and total active reflection coefficient.  相似文献   

18.
In this article, by analyzing the equivalent circuit mode for electromagnetic bandgap (EBG), a novel compact planar EBG structure is proposed for overcoming the drawback of narrow bandwidth of conventional EBG structures. The novel design is based on using meander lines to increase the effective inductance of EBG patches. The simulated and measured results demonstrate the simultaneous switching noise (SSN) can be mitigated with an ultra‐wideband from 280 MHz to 20 GHz at the restraining depth of ?40 dB. Compared with the traditional L‐bridge and meander lines EBG structures, this novel structure has the advantages of suppression bandwidth and fabrication cost. Moreover, signal integrity is achieved by the time‐domain simulation. The proposed structure provides a new kind of theoretical designing reference for EBG structure to improve the bandwidth of restraining SSN. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:429–436, 2014.  相似文献   

19.
In this article, a progressive system‐level simulation framework is developed based on Simulation de Chaînes d'Emission/Réception Nouvelle gEnération (SCERNE) platform to simulate an ultra‐wideband (UWB) impulse radar transmitter and accurately predict its performance. With the purpose of demonstrating the usefulness of the SCERNE ability in system‐level modeling, we present and simulate a simplified structure of UWB impulse radar transmitter. First, after simulation each component in different circuit‐level tools such as ADS, CST, and HFSS, each part has been modeled by using different modeling methods to transfer their data into MATLAB environment. Then, we duplicate the transmitter structure in SCERNE toolbox to validate the results. The advantage conferred by the proposed SCERNE toolbox is that fast and accurate bilateral modeling method is available at multi‐medium structures in contrast with conventional unilateral modeling, and so a lower memory and higher accuracy of the behavioral model is achieved. It can also be beneficial when the user is looking for system‐level, as the increased components amounts can help as a surrogate model. The system model can be easily extended to other UWB radar systems by simply changing the input pulse shape, UWB channel environment, transceiver topology, etc. Various effects such as signal quality, and pulse shape that can easily investigate and re‐optimize for high performance are using the developed model. To validate the practicality of the proposed paradigm, the simulations and predictions through model results are being outlined.  相似文献   

20.
A compact ultra‐wideband multiple‐input multiple‐output (UWB‐MIMO) antenna with good isolation and multiple band‐notch abilities is developed in this work. It consists of two quadrant shaped monopole antennas backed by ground stubs. A good isolation is achieved due to the two proposed extended curved ground stubs. The frequency rejection for the WLAN system is realized by loading a capacitive loaded loop resonator adjacent to the feed line. The band rejection for the WiMAX and LTE band43 system is achieved by embedding a quadrant shaped CSRR on each radiator's surface. The measured bandwidth of the antenna is 3.06 GHz‐11 GHz (|S11| < ?10 dB and |S21| < ?18 dB) with a band rejection from 3.5 GHz‐4 GHz to 5.1 GHz‐5.85 GHz, respectively. Time domain performances are investigated in terms of group and phase delay characteristics. Diversity characteristics are evaluated in terms of the envelope correlation coefficient, mean effective gain, and channel capacity loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号