首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, a geometrically simple, microstrip line‐fed planar monopole structure with slanting edge ground plane is designed to realize the dual‐band dual‐polarized operation. The proposed antenna consists of a rotated U‐shaped patch and an electromagnetically coupled L‐shaped parasitic radiating element. Owing to the combination of microstrip line‐fed radiating patch and a slanting‐edge rectangular ground plane on the opposite side of the substrate, the proposed dual‐band antenna can generate broad axial ratio bandwidth (ARBW) in the upper frequency band. The overall dimension of the prototype is only 32 × 32 × 1.6 mm3. The measured results validate that the proposed antenna has two operational frequency bands, 29.84% (1.54‐2.08 GHz) for linearly polarized radiation and 71.85% (3.96‐8.4 GHz) for circularly polarized radiation. Measured result shows that 3‐dB ARBW of the proposed antenna is 73.54% (3.80‐8.22 GHz) in the higher frequency band. It shows that the higher frequency band exhibits a left‐hand circularly polarized radiation in the boresight direction.  相似文献   

2.
In this article, multiband monopole antenna has been designed for the applications of wireless communication systems. The antenna is composed of I‐shaped strips which are placed in such a way that the each of the resonating strips produced distinct frequency bands. The optimum dimension of the proposed antenna is printed on dielectric substrates of FR4 epoxy having dimensions of 0.3λ0 × 0.21λ0 × 0.009λ0. The antenna has been fabricated and measured for evidence. The measured results are verified with simulated results. The comparison of simulated and measured S11 parameter, radiation pattern, peak gains, and circular polarization are described in the section of experimental results. The measured result shows that the antenna may cover the frequency band of Digital Cellular System, Personal Communications Service, Long Term Evolution‐4G, Bluetooth, Worldwide Interoperability Microwave Access, Wireless Local Area Network, 802.11j (WLAN‐Public Safety), and X‐band (Satellite Communication‐downlink).  相似文献   

3.
A low profile circularly polarized (CP) antenna based on printed monopole and sequential rotation feed network is presented. As the monopole placed on the edge of the limited floor produces an axial radiation, CP radiation will be obtained when the sequential rotation technique is introduced to enclose the 6 monopoles into a hexagon. By folding the top of the monopole elements to the center, the profile of the antenna is reduced greatly. Measurement results show that the proposed antenna has a good CP performance and a small size. The antenna operates at 1.575 GHz with profile of 7 mm and 3 dB beamwidth of 140°.  相似文献   

4.
This letter presents the design of a broadband microstrip CP antenna using single‐fed technique. The feeding network is integrated within the coupling feed patch to simplify the structure. The proposed antenna is designed for Global Navigation satellite System (GNSS) operating at 1575.42 ± 10.23 MHz (GPS: L1 band), 1559~1592 MHz (Galileo: E2‐L1‐E1 band), 1602 ± 5.625 MHz (GLONASS: L1 band) and 1559.052~1591.788 MHz & 1610~1626.5 MHz (BeiDou Navigation Satellite System B1 and L band). Another advantage of this antenna is the much wider bandwidth in both VSWR and 3 dB axial‐ratio compared with traditional single‐fed CP antennas. Details of design, simulated and experimental results of this CP antenna are presented and discussed. The measured results confirm the validity of this design which meet the requirement of GNSS applications.  相似文献   

5.
In this article, a circularly polarized coupled slot 1 × 4 stacked patch antenna array with enhanced bandwidth is proposed for S‐band applications. Initially, a patch antenna radiating at 2.79 GHz is designed and maximum energy from feedline to patch element is coupled using two rectangular slots. Whereas, a parallel feedline structure is designed to provide polarization flexibility by creating 0, 90 , and 180o phase differences. Then, a truncated patch element is vertically stacked in the design to achieve broader bandwidth of 600 MHz over frequency range from 2.4 to 3.0 GHz. Finally, a coupled slot 1 × 4 array stacked antenna array having feedline line structure to provide 90o phase difference for circular polarization is designed and fabricated for measurements. It is observed that the final design achieved target specification having impedance matching (|S11 | (dB) < ?10 dB over 2.4 to 3.0 GHz, broad band circular polarization, and 11.5 dBic total gain. Overall, a good agreement between simulated and measurement results is observed.  相似文献   

6.
A compact widebeam circularly polarized antenna with wide impedance and axial ratio (AR) bandwidths is proposed in this study. The antenna is composed of a pair of crossed dipoles, four sequentially rotated parasitic elements, a slotted ground plane with four vertical plates, and four inverted L‐shaped structures. A prototype is fabricated and measured. An impedance bandwidth (S11 < ?10 dB) of 102.4% and a 3‐dB AR bandwidth of 83.5% are measured. And half‐power beamwidth is more than 120° over the whole operating band. Radiation patterns are symmetrical and identical in both principal planes. The compact size of antenna is 0.42λ0 × 0.42λ0 × 0.16λ0.  相似文献   

7.
This paper presents a new approach to design dual‐band antenna with dual‐sense circularly polarized (CP) operation. A principle for CP radiation is the use of two orthogonal dipoles and properly choosing their lengths can produce either right‐hand CP (RHCP) or left‐hand CP (LHCP) operation. In the proposed structure, the lower frequency band at 2.4 GHz is designed with RHCP radiation and LHCP is the operating mode of the higher band at 3.5 GHz. For verification, an antenna prototype is fabricated and measured. Measured data indicate that good performances over the RHCP and LHCP bands can be obtained with usable bandwidths of 2.9% (2.36‐2.43 GHz) and 1.7% (3.48‐3.54 GHz). Along with this, it also observes good unidirectional radiation patterns and the measured broadside gains are around 7.7 and 7.4 dBic across these frequency ranges.  相似文献   

8.
A microstrip antenna with dual‐band reconfigurable circular polarization (CP) characteristics in Wireless Local Area Network (WLAN) and Worldwide Interoperability for Microwave Access (WiMAX) bands is presented in this article. The proposed antenna has a symmetrical U‐shaped slot with PIN diodes on the ground plane. The slotted ground generates a resonant mode for broad impedance‐band width, and excites contrary CP state at 2.45 GHz for WLAN and 3.4 GHz for WiMAX, respectively. Because switching the states of PIN diodes on the slot can redirect the current path, the CP state of the proposed antenna can be simply switched between the right‐handed CP and left‐handed CP. The proposed antenna has a low profile and a simple structure. Measured results of the fabricated antenna prototype are carried out to verify the simulation analysis. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:109–114, 2015.  相似文献   

9.
In this study, a simple broadband circularly polarized (CP) printed monopole antenna for S/C‐band applications is proposed. The CP antenna is composed of a falcate‐shaped monopole with a right‐angle trapezoid stub, then wide impedance and axial ratio (AR) bandwidths are achieved. By placing one rectangular split‐ring resonator above the stub for generating upper CP mode, both of impedance and CP performances are further improved. The proposed antenna is fabricated on a FR4 substrate and measured. The measured ?10‐dB impedance bandwidth is 107%, ranging from 2.4‐7.9 GHz, and the measured 3‐dB AR bandwidth is 94% (2.4‐6.6 GHz), covering the entire wireless local area network (WLAN) and WiMAX bands.  相似文献   

10.
In this article, a compact single fed hexa‐band circularly polarized (CP) monopole antenna using split ring resonators (SRRs) on the partial ground plane is designed and experimentally investigated. The loaded SRR elements generate multiple circularly polarized bands along with a reduction in antenna size. The multiband can be controlled by changing the configuration of SRRs and their position on the ground plane without altering the monopole radiator. To illustrate the CP mechanism and multiband operation of the proposed configuration, the surface current density has been studied. The antenna is fabricated on RT Duroid 5880 substrate of permittivity 2.2 with a total size of 47 × 40 × 1.57 mm3. Compared with the existing antenna designs, the proposed structure is compact and demonstrates improved multiband performance with circular polarization.  相似文献   

11.
A compact modified C‐shaped monopole antenna with broadband circular polarization is proposed, fabricated and measured. The antenna structure is simple and only consists of combined modified C‐shaped radiation patch and an improved ground plane with the overall size of 25 × 25 × 1 mm3. By cutting the corner on the modified C‐shaped patch and adding triangular stubs on the ground plane, the wide impedance bandwidth and axial ratio bandwidth are achieved. The design process of the antenna is given, and the circular polarization mechanism of the circularly polarized antenna is analyzed from the surface current distributions. The measured impedance bandwidth is 95.2% (4.4‐12.4 GHz) with return loss better than 10 dB, and the measured 3 dB axial ratio bandwidth is 96.8% (4.42‐12.72 GHz). The peak gain is above 3.0 dBi within the working band, which indicates that it is suitable for application of ultra‐wideband (UWB) wireless communication systems and satellite communication systems.  相似文献   

12.
In this letter, we present a circular polarization antenna array using the novel slot‐coupling feeding technique. This antenna includes eight elements which are installed in line, each array element is fed by means of two microstrip lines with equal amplitude and phase rotation of 90°. The feeding microstrip lines are coupled to a square patch through a square‐ring slot realized in the feeding network ground plane. With the presence of the slots, this antenna array is able to cover the range of frequency of 3 GHz to 4 GHz. The size of the proposed antenna array is 7λ × 1.8λ × 0.4λ. The measured gain is 15.2 dBi and the bandwidth of S11< ?10 dB is 1 GHz (3–4 GHz, 28%). The antenna array is suited for the WiMAX applications. With the use of slot‐coupling feeding technique, the measured bandwidth for axial ratio < 3 dB is about 24% in the WiMAX frequency band (3.3–3.8GHz). The measured HPBW of the yz planes is larger than 62°. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:567–574, 2016.  相似文献   

13.
In this article, a wideband circularly polarized (CP) dielectric resonator (DR) over an asymmetric‐slot radiator based hybrid‐DR antenna is proposed with bi‐directional radiation characteristics. Bi‐directional CP radiation of the dual sense is obtained using a rectangular‐DR over asymmetric‐rectangular‐slot radiator with L‐shaped feed line. The asymmetric‐slot radiator feed by L‐shaped stub with the coplanar waveguide is used for generating two orthogonal modes, namely TE x δ11 and TEy1δ1 in the combined (rectangular‐DR and asymmetric‐slot radiator) hybrid‐DR antenna, which is verified by the distribution of electric field inside the rectangular DRA. The measured reflection coefficient bandwidth (S11 < ?10 dB) and axial ratio (AR) bandwidth (AR < 3 dB) of the hybrid‐DR antenna are 80.5% (1.87‐4.39 GHz) and 43.8% (1.75‐2.73 GHz), respectively. The antenna radiation is in the broadside (θ = 0°, ? = 0°) direction as well as in the backside (θ = 180°, φ = 0°) direction with equal magnitudes in both the directions. Right‐handed and left‐handed CP waves are achieved respectively, in the boresight (+Z) and the backside (?Z) directions. The proposed CP hybrid‐DR antenna gives an average gain of 3.55 dBic and radiation efficiency of 95.0% in both directions. The proposed antenna covers various wireless useful bands such as ISM 2400 band, Wi‐Fi, Bluetooth, and Wi‐MAX (2.5‐2.7 GHz).  相似文献   

14.
A multiband circularly polarized slot antenna for wireless local area networks (WLAN) and worldwide interoperability for microwave access (WiMAX) applications is designed, studied, and fabricated. Using modified ground plane structure, circular polarized characteristics are realized. An open rectangular loop is introduced on the ground plane to generate orthogonal modes at middle resonance frequency. At higher resonance frequency to improve axial ratio bandwidth, a D‐shaped radiator is used. Thus, the cooperation of modified ground plane, open loop resonator, and D‐shaped radiator improves performance of the antenna at all the required bands. The proposed microstrip antenna generates separate impedance bandwidths to cover frequency bands of WLAN and WiMAX applications. The realized antenna is relatively small in size 40 × 54 mm2 or 0.26_ × 0.36_ where _ is the free‐space wavelength at the desired first resonant frequency 2.0 GHz and operates over frequency ranges 26% (2.0‐2.6 GHz), 8.9% (3.21‐3.51 GHz), and 50.6% (3.8‐6.38 GHz). In addition, the antenna exhibits 5% (2.32‐2.44 GHz), 5.8% (3.3‐3.5 GHz), and 5.2% (5.61‐5.91 GHz) Circular Polarization bandwidth, making it suitable for WLAN and WiMAX applications.  相似文献   

15.
A wideband circularly polarized printed antenna is proposed and fabricated, which employs monofilar spiral stubs and a slit in the asymmetrical ground plane which are fed by an inverted L‐shaped microstrip feedline. The CP operation is realized by embedding an inverted‐L shaped strip and modified ground plane and can be markedly improved by loading monofilar spiral stubs asymmetrically connected at the edge of the ground plane. After optimization, the measured results of the finally structure demonstrate that a 10‐dB bandwidth of 67.6% from 4.6 to 9.3 GHz and a 3‐dB axial‐ratio bandwidth (ARBW) for circular polarization (CP) of 60.1% from 5 to 9.3 GHz could be achieved which could completely cover the WLAN (5.725‐5.85 GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band. To explain the mechanism of broadband circular polarization operation, the analysis of magnetic fields distributions and a parametric study of the design are given. Compared to other recent works, a simpler structure, wider axial ratio and impedance bandwidths and a more compact size are the key features of the proposed antenna.  相似文献   

16.
A wide‐beam circularly polarized (CP) cross‐dipole antenna for GNSS applications is proposed in this article. This cross‐dipole antenna is fed by a coaxial cable, on which the slots is added to optimize the impedance matching. These two pairs of dipole arms are designed with different lengths to obtain the circularly polarized radiation. Enhanced wide‐beam CP radiation characteristics can be achieved by curving the dipole arms and adjusting the distance between the arms and the metallic ground plane. The study of proposed antenna performance with different geometric parameters has been conducted. The final antenna exhibits a good impedance bandwidth (IBW) of ~13.1% (1.50‐1.71 GHz), and the 3‐dB axial‐ratio bandwidth is over 7% (1.52‐1.64 GHz). Broad pattern coverage of more than 140°, pure CP radiation at all designed bands and a wide 3 dB axial‐ratio beamwidth (ARBW) of nearly 150° makes this antenna an excellent candidate for satellite communications and navigation systems.  相似文献   

17.
A halved falcate‐shape dual‐broadband circularly polarized printed monopole antenna is proposed. To generate the equal amplitude orthogonal modes, two halved falcate‐shaped antenna are used. Also, to provide the 90° phase difference between the two modes, three stubs are used in the ground plane of the antenna. The proposed antenna provides 22.6 (1.36–1.72 GHz) and 44.4% (5.25–8.25 GHz) 3 dB axial ratio bandwidth over the lower and upper bands, respectively. By adjusting the parameters of the antenna, the lower and upper band center frequencies can be tuned individually. The proposed antenna is fabricated, and results are compared with those of the simulation. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

18.
This article presents a newly circularly polarized (CP) antenna for V2X's dedicated short range communications applications. Its CP characteristic is enabled by a 70 Ω sequential phase feeding network and sequential rotation technique designed on top of the substrate. It has features of ≈90° phase difference in sequence between ports of S21 = 2.4°, S31 = ?87°, S41 = ?180°, and S51 = ?276°, resulting in a 2.19 dB axial ratio centered at 5.9 GHz. The length of the SP feeding network to each ports designed in the different form of meander lines are the key to control the generated phase at the center frequency It also contributes to the smaller final size of 0.59λ × 0.59λ. The proposed antenna operated from 5.850 to 5.925 GHz with a gain between 4 and 6 dBi. The gains are radiated in bidirectional mode due to the presence of the complimentary dipoles located on the opposite side of the substrate. These features indicate the suitability of the proposed antenna in compliance to the ITS‐G5 OBU V2X standard.  相似文献   

19.
A Z‐shaped dipole antenna with parasitic strips is proposed for wideband and unidirectional circular polarization operation in this article. The dipole arms are bent into L‐shape for circular polarization, and printed balun is used to achieve good impedance matching. To further extend the axial ratio bandwidth, two parasitic strips are employed to introduce an additional band of circularly polarized operation at the high frequency. Measured results demonstrate that the proposed antenna has a 10‐dB impedance bandwidth of 63.3% (1.64‐3.16 GHz) and a 3‐dB axial ratio bandwidth of 51.1% (1.72‐2.9 GHz). Stable radiation patterns with gain around 9 dBic along +z‐axis are also observed.  相似文献   

20.
In this article, we present a new broadband CP square‐slot antenna with an inverted F‐shaped feed‐line. The antenna is composed of an inverted F‐shaped feed‐line, pairs of isosceles triangular chamfers, I‐shaped slots, rectangular slots and triangular patches, and a Z‐shaped strip. By introducing these strips and slots into the square‐slot, multiple CP modes can be stimulated simultaneously, which eventually enhances 3‐dB ARBW and 10‐dB impedance bandwidth (IBW) of the presented antenna. The measured results show that its IBW (|S11| < ?10 dB) is about 7.2 GHz (87.8% from 4.6 to 11.8 GHz) and its ARBW (AR < 3 dB) is 8.3 GHz (96% from 4.5 to 12.8 GHz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号