首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new notion of input‐to‐state stability involving infinity norms of input derivatives up to a finite order k is introduced and characterized. An example shows that this notion of stability is indeed weaker than the usual ISS . Applications to the study of global asymptotic stability of cascaded non‐linear systems are discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
3.
This paper studies the robustness problem of the min–max model predictive control (MPC) scheme for constrained nonlinear time‐varying delay systems subject to bounded disturbances. The notion of the input‐to‐state stability (ISS) of nonlinear time‐delay systems is introduced. Then by using the Lyapunov–Krasovskii method, a delay‐dependent sufficient condition is derived to guarantee input‐to‐state practical stability (ISpS) of the closed‐loop system by way of nonlinear matrix inequalities (NLMI). In order to lessen the online computational demand, the non‐convex min‐max optimization problem is then converted to a minimization problem with linear matrix inequality (LMI) constraints and a suboptimal MPC algorithm is provided. Finally, an example of a truck‐trailer is used to illustrate the effectiveness of the proposed results. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
In this paper, several new Razumikhin‐type theorems for impulsive stochastic functional differential equations are studied by applying stochastic analysis techniques and Razumikhin stability approach. By developing a new comparison principle for stochastic version, some novel criteria of the pth moment integral input‐to‐state stability and input‐to‐state stability are derived for the related systems. The feature of the criteria shows that time‐derivatives of the Razumikhin functions are allowed to be indefinite, even unbounded, which can loosen the constraints of the existing results. Finally, some examples are given to illustrate the usefulness and significance of the theoretical results.  相似文献   

5.
Sontag's formula proves constructively that the existence of a control Lyapunov function implies asymptotic stabilizability. A similar result can be obtained for systems subject to unknown disturbances via input‐to‐state stabilizing control Lyapunov functions (ISS‐clfs) and the input‐to‐state analogue of Sontag's formula. The present paper provides a generalization of the ISS version of Sontag's formula by completely parameterizing all continuous ISS control laws that can be generated by a known ISS‐clf. When a simple inner‐product constraint is satisfied, this parameterization also conveniently describes a large family of ISS controls that solve the inverse‐optimal gain assignment problem, and it is proved that these controls possess Kalman‐type gain margins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the stability of a variable‐speed wind turbine operating under low to medium wind speed. The turbine is controlled to capture as much wind energy as possible. We concentrate on the mechanical level of the turbine system, more precisely on the drive‐train with the standard quadratic generator torque controller. We consider both the one‐mass and the two‐mass models for the drive‐train, with the inputs being the deviation of the active torque from an arbitrary positive nominal value and the tracking error of the generator torque. We show that the turbine system is input‐to‐state stable for the one‐mass model and integral input‐to‐state stable for the two‐mass model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
8.
This paper aims to investigate the input‐to‐state exponents (IS‐e) and the related input‐to‐state stability (ISS) for delayed discrete‐time systems (DDSs). By using the method of variation of parameters and introducing notions of uniform and weak uniform M‐matrix, the estimates for 3 kinds of IS‐e are derived for time‐varying DDSs. The exponential ISS conditions with parts suitable for infinite delays are thus established, by which the difference from the time‐invariant case is shown. The exponential stability of a time‐varying DDS with zero external input cannot guarantee its ISS. Moreover, based on the IS‐e estimates for DDSs, the exponential ISS under events criteria for DDSs with impulsive effects are obtained. The results are then applied in 1 example to test synchronization in the sense of ISS for a delayed discrete‐time network, where the impulsive control is designed to stabilize such an asynchronous network to the synchronization.  相似文献   

9.
This paper studies finite‐time stabilization problem for stochastic low‐order nonlinear systems with stochastic inverse dynamics. By characterizing unmeasured stochastic inverse dynamics with finite‐time stochastic input‐to‐state stability, combining the Lyapunov function and adding a power integrator technique, and using the stochastic finite‐time stability theory, a state feedback controller is designed to guarantee global finite‐time stability in probability of stochastic low‐order nonlinear systems with finite‐time stochastic input‐to‐state stability inverse dynamics.  相似文献   

10.
This paper describes a delay‐range‐dependent local state feedback controller synthesis approach providing estimation of the region of stability for nonlinear time‐delay systems under input saturation. By employing a Lyapunov–Krasovskii functional, properties of nonlinear functions, local sector condition and Jensen's inequality, a sufficient condition is derived for stabilization of nonlinear systems with interval delays varying within a range. Novel solutions to the delay‐range‐dependent and delay‐dependent stabilization problems for linear and nonlinear time‐delay systems, respectively, subject to input saturation are derived as specific scenarios of the proposed control strategy. Also, a delay‐rate‐independent condition for control of nonlinear systems in the presence of input saturation with unknown delay‐derivative bound information is established. And further, a robust state feedback controller synthesis scheme ensuring L2 gain reduction from disturbance to output is devised to address the problem of the stabilization of input‐constrained nonlinear time‐delay systems with varying interval lags. The proposed design conditions can be solved using linear matrix inequality tools in connection with conventional cone complementary linearization algorithms. Simulation results for an unstable nonlinear time‐delay network and a large‐scale chemical reactor under input saturation and varying interval time‐delays are analyzed to demonstrate the effectiveness of the proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A moving horizon observer is analyzed for nonlinear discrete‐time systems. Exponential stability relies on a global detectability assumption that utilizes the concept of incremental input‐to‐state‐stability.  相似文献   

12.
13.
This paper investigates the input‐to‐state stability (ISS) issue for discrete‐time dynamical networks (DDNs) with time delays. Firstly, a general comparison principle for solutions of DDNs is proposed. Then, based on this general comparison principle, three kinds of ISS‐type comparison principles for DDNs are established, including the comparison principle for input‐to‐state ‐stability, ISS, and exponential ISS. The ISS‐type comparison principles are then used to investigate stability properties related to ISS for three kinds (linear, affine, and nonlinear) of DDNs. It shows that the ISS property of a DDN can be derived by comparing it with a linear or lower‐dimension DDN with known ISS property. By using methods such as variation of parameters, uniform M‐matrix, and the ISS‐type comparison principle, conditions of global exponential ISS for time‐varying linear DDNs with time delays are derived. Moreover, the obtained ISS results for DDNs are extended to the hybrid DDNs with time delays. As one application, the synchronization within an error bound in the sense of ISS is achieved for DDNs with coupling time delays and external disturbances. Finally, two examples are given to illustrate the results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This paper addresses the design of low‐level controllers for leader–follower formations of nonholonomic vehicles in the presence of bounded measurement delays. The concept of input‐to‐state stability is extended to encompass the effect of bounded delays and restrictions on the input. A method is proposed to integrate a Smith predictor in a backstepping design on the basis of nested saturations and nonlinear small‐gain assignment, which allows for time delays in the feedback loop. Robustness analysis under uncertain bounded time delays is provided, and design tradeoffs resulting from the use of bounded controls are discussed. Illustrative simulations are shown to validate the design and robustness analysis in the context of a simple leader–follower trailing control problem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this work sufficient conditions for uniform input‐to‐output stability and uniform input‐to‐state stability are presented for finite‐dimensional systems under feedback control with zero‐order hold. The conditions are expressed by means of single and vector Lyapunov functions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
As a practically important class of nonlinear stochastic systems, this paper considers stochastic port‐Hamiltonian systems (SPHSs) and investigates the stochastic input‐to‐state stability (SISS) property of a class of SPHSs. We clarify necessary conditions for the closed‐loop system of an SPHS to be SISS. Moreover, we provide a systematic construction of both the SISS controller and Lyapunov function so that the proposed necessary conditions hold. In the main results, the stochastic generalized canonical transformation plays a key role. The stochastic generalized canonical transformation technique enables to design both coordinate transformation and feedback controller with preserving the SPHS structure of the closed‐loop system. Consequently, the main theorem guarantees that the closed‐loop system obtained by the proposed method is SISS against both deterministic disturbance and stochastic noise. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Recently, the small‐gain theorem for input‐to‐state stable (ISS) systems has been extended to the class of integral input‐to‐state stable (iISS) systems. Feedback connections of two iISS systems are robustly stable with respect to disturbance if an extended small‐gain condition is satisfied. It has been proved that at least one of the two iISS subsystems needs to be ISS for guaranteeing globally asymptotic stability and iISS of the overall system. Making use of this necessary condition for the stability, this paper gives a new interpretation to the iISS small gain theorem as transient plus ISS small‐gain regulation. The observation provides useful information for designing and analyzing nonlinear control systems based on the iISS small‐gain theorem.  相似文献   

18.
19.
In this paper, we propose a simple, continuous, and distributed controller for the second‐order multiagent system to achieve leader‐following trajectory tracking, by exploiting the control input information of neighbors (CIIN) and using proportional‐derivative (PD) control in terms of local neighborhood synchronization error. A constant time delay is introduced in the CIIN as a design parameter to avoid the algebraic loop issue arising from the control input coupling. We develop an easily testable condition on the PD gains to ensure that the resulting neutral‐type error system is input‐to‐state stable for an arbitrary bounded delay, and prove that when the leader's acceleration is a Lipschitz continuous function with respect to time, the ultimate bound of tracking errors is strictly increasing with respect to the introduced time delay. Moreover, we analyze the robustness of the controller with respect to model uncertainties and show its potential advantages over two existing controllers in balancing the steady‐state tracking precision, the communication cost, and the continuity of controller signal. Finally, extensive simulations are conducted to show the effect of the delay on system stability, to verify the condition on PD gains, to confirm the robustness of the controller, and to demonstrate the detailed advantages.  相似文献   

20.
In this paper, the problems of the input‐to‐state stability (ISS), the integral input‐to‐state stability (iISS), the stochastic input‐to‐state stability (SISS) and the eλt(λ>0)‐weighted input‐to‐state stability (eλt‐ISS) are investigated for nonlinear time‐varying impulsive stochastic delay systems with Markovian switching. We propose one unified criterion for the stabilizing impulse and the destabilizing impulse to guarantee the ISS, iISS, SISS and eλt‐ISS for such systems. We verify that when the upper bound of the average impulsive interval is given, the stabilizing impulsive effect can stabilize the systems without ISS. We also show that the destabilizing impulsive signal with a given lower bound of the average impulsive interval can preserve the ISS of the systems. In addition, one criterion for guaranteeing the ISS of nonlinear time‐varying stochastic hybrid systems under no impulsive effect is derived. Two examples including one coupled dynamic systems model subject to external random perturbation of the continuous input and impulsive input disturbances are provided to illustrate the effectiveness of the theoretic results developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号