首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

This paper examined the effects of using 1 nm thickness lubricant thin film combined with additives and deep ultraviolet (UV) irradiation at 185 nm wavelength on the magnetic hard disk to the wear of the magnetic head during contact. Different types and amount of additives were added into the lubricant thin film either with or without deep UV irradiation. A test involved burnishing the magnetic head on the lubricated magnetic hard disk was conducted. The experiment was conducted in a class 100 cleanroom. Contrary to previous studies, the addition of additives into the lubricant film did not lead to a decrease in the amount of wear to the magnetic head. Without deep UV irradiation, the lubricant film combined with additives causes more wear to the magnetic head. The effects of using different percentages of cyclotriphosphazene based additives in perfluoropolyether lubricant were also discussed in this paper. We conclude that deep UV irradiation needed if additives were added when the total lubricant thin film thickness is at 1 nm or below.

  相似文献   

2.
A technique is suggested to measure a threshold of two-photon initiated photopolymerisation involving Z-scan of a thin film of sensitive material along the focusing axis of the laser beam. The condition of reaching the threshold when gradually increasing the light intensity by moving the film towards the focal spot of the beam is defined as that with minimal intensity at which polymerization occurs. The occurrence of the polymerization is detected by interferometric effect inside the transmitted beam itself, which is due to interference of the wave going through the polymerization area and the wave going around it. The technique is demonstrated for measurements employing Nd:YAG laser in nanosecond regime with fundamental frequency 1064 nm and its harmonic of 532 nm, as well as with pumped by its third harmonic optical parametric oscillator. Threshold data are presented for particular systems, indicating threshold of 5 GW/cm2 for a system based on Rose Bengal exposed by 1064 nm nanosecondpulsed radiation and 0.05 GW/cm2 for Darocur initiators exposed to 532 nm. The text was submitted by the author in English.  相似文献   

3.
To analyze the hysteresis phenomenon in p‐channel low‐temperature polycrystalline‐silicon thin‐film transistors (LTPS TFTs), the direct correlation between the hysteresis and the interface (Nit) and the grain‐boundary trap density (Ntrap) has been investigated. To fabricate LTPS TFTs with different electrical properties and trap types, the thickness of a‐Si was varied from 30 to 80 nm and crystallized by the excimer‐laser‐anneal (ELA) method. The interface trap density is extracted from the subthreshold slope (SS) and low‐high‐frequency C‐V analysis, while the grain‐boundary trap density is extracted by the Levinson and Proano method. The LTPS TFTs with smaller hysteresis exhibited a lower trap density. From the correlation between extracted parameters, the hysteresis seems to be more dependent on Nit and decreases when the film thickness increases to 80 nm while the Ntrap is almost the same in all devices.  相似文献   

4.
The structural, optical, and electrical properties of Si‐doped SnO2 (STO) films were investigated in terms of their potential applications for flexible electronic devices. All STO films were amorphous with an optical transmittance of ~90%. The optical band gap was widened as the Si content increased. The Hall mobility and carrier density were improved in the SnO2 with 1 wt% Si film, which was attributed to the formation of donor states. Si (1 wt%) doped SnO2 thin‐film transistor exhibited a good device performance and good stability with a saturation mobility of 6.38 cm2/Vs, a large Ion/Ioff of 1.44 × 107, and a SS value of 0.77 V/decade. The device mobility of a‐STO TFTs at different bending radius maintained still at a high level. These results suggest that a‐STO thin films are promising for fabricating flexible TFTs.  相似文献   

5.
Abstract— Low‐temperature‐polysilicon thin‐film transistors (LTPS TFTs) were fabricated on polymer substrates using sputtered amorphous‐Si (a‐Si) films and excimer‐laser crystallization. The in‐film argon concentration of a‐Si films was minimized as low as 1.6% by using an argon/helium gas mixture as the sputtering gas. By employing XeCl excimer‐laser crystallization, poly‐Si films were successfully fabricated on polymer substrates with an average grain size of 400 nm. With a four‐mask process, a poly‐Si TFT was fabricated with a fully self‐aligned top‐gate structure, and the pMOS TFT device showed a field‐effect mobility of 63.6 cm2/V‐sec, ON/OFF ratio of 105, and threshold voltage of ?1.5 V.  相似文献   

6.
We have developed a new type of non-contact three-dimensional photo-thermal etching method for agar microculture chips exploiting the characteristics of two different wavelengths of infrared laser beams. We used two different wavelengths of infrared (1480 and 1064 nm) focused laser beam as a heat source to melt and remove a portion of 200 μm high agar gel layer on the 5 nm thick chromium-coated glass slide. As the 1480 nm infrared beam is absorbed by water, the agar gel on the light pathway is heated and melted. On the other hand, as the 1064 nm infrared beam is not absorbed by water and agar, the melting of the agar occurred just near the chromium thin layer that absorbs 1064 nm infrared light. Using this non-contact etching, we can easily make microstructures in agar-layer using infrared laser beam only within a few minutes; i.e. cell-culture holes are melted by 100 mW, 1480 nm laser and tunnels by 100 μm/s, 40 mW, 1064 nm laser, respectively. The size of holes and tunnels were also controlled by choosing the irradiation power and time of infrared lasers. Those results indicate that we can make and use microstructures for biological use without any expensive microfablication facilities nor a series of complicated procedure and time.  相似文献   

7.
Abstract— The performance of high‐temperature re‐crystallized (RC) metal‐induced laterally crystallized (MILC) polycrystalline‐silicon (poly‐Si) thin‐film transistors (TFT) have been improved by (1) patterning the active islands before MILC, (2) removing nickel‐containing residues using acid cleaning, (3) using heavily boron‐doped poly‐Si gates to achieve threshold voltage symmetry, and (4) double‐implanting n‐type source/drain junctions. A 30‐MHz driver circuit based on this improved technology was demonstrated. The reliability of optimized RC‐MILC poly‐Si TFTs has not been adversely affected by residual nickel‐containing contaminants in the TFT channel regions.  相似文献   

8.
Novel tunable lasers based on 1.5-μm and 1.57-μm cascaded distributed-feedback reflectors are realized for real-time monitoring of H2O and CO gas mixtures immediately in multi-gas sensor systems. With simple fabrication procedures, the new design allows the realization of a widely tunable laser source that can cover the H2O and CO absorption wavelength bands. With the temperature tuning of 0.1 nm/°C and current tuning of 0.014 nm/mA, the laser can be tuned to cover over 3 nm wavelength range in each wavelength band. Experiments verify that the lasers can have more than 38 dB SMSR over the tuning range. The characteristics of high power, excellent spectral purity, and simple wavelength switching control can simplify the analysis procedures of gas sensing and thus reduce the cost. By direct absorption method, the tunable laser has been successfully adopted in a diode laser sensor system for monitoring of water vapor concentration near 1.5 μm and carbon monoxide near 1.57 μm. Less than 15% error in the line strength is observed between the measured data and HITRAN database.  相似文献   

9.
Thin amorphous silicon (a-Si) films were crystallized into polycrystalline silicon (poly-Si) by combining solid phase crystallization (SPC) and subsequent excimer laser annealing (ELA). Then thin film transistors (TFTs) were fabricated by using the poly-Si formed in the single and double excimer laser scanned area. The device performance of the TFTs fabricated with the excimer laser energy density of 230 mJ/cm2 is almost equal for the single and double scanned area. This observation indicates that the overlapping laser irradiation with the laser energy density below 230 mJ/cm2 does not change the characteristics of TFTs. Based on this result, we discuss the correlation between performance of active matrix organic light emitting display (AMOLED) panels and excimer laser energy density during ELA for SPC treated and non-treated poly-Si films.  相似文献   

10.
Abstract— Zinc oxide (ZnO) and indium gallium zinc oxide (IGZO) thin films subjected to laser irradiation were investigated. The structural, optical, and electrical properties of the as‐deposited and laser‐irradiated films at different laser dosages were studied. The crystallinity of the structure increased after laser treatment. The transmittances without/with laser irradiation had a net rise of 85–92% and 80–95% (@550 nm) for 250‐nm ZnO and IGZO films, respectively. Thin‐film transistors (TFTs) with ZnO and IGZO as the active layer were fabricated. The as‐deposited ZnO/IGZO TFT devices had a field‐effect mobility of 0.19 and 1.3 cm2/V‐sec, respectively. The electrical characteristics increased by more than 2.8 times for ZnO and by 5.8 times for IGZO with laser treatment. The field‐effect mobility of ZnO and IGZO are 0.5 and 7.65 cm2/V‐sec.  相似文献   

11.
Abstract— A complete poly‐Si thin‐film transistor (TFT) on plastic process has been optimized to produce TFT arrays for active‐matrix displays. We present a detailed study of the poly‐Si crystallization process, a mechanism for protecting the plastic substrate from the pulsed laser used to crystallize the silicon, and a high‐performance low‐temperature gate dielectric film. Poly‐Si grain sizes and the corresponding TFT performance have been measured for a range of excimer‐laser crystallization fluences near the full‐melt threshold, allowing optimization of the laser‐crystallization process. A Bragg reflector stack has been embedded in the plastic coating layers; its effectiveness in protecting the plastic from the excimer‐laser pulse is described. Finally, we describe a plasma pre‐oxidation step, which has been added to a low‐temperature (<100°C) gate dielectric film deposition process to dramatically improve the electrical properties of the gate dielectric. These processes have been integrated into a complete poly‐Si TFT on plastic fabrication process, which produces PMOS TFTs with mobilities of 66 cm2 /V‐sec, threshold voltages of ?3.5 V, and off currents of approximately 1 pA per micron of gate width.  相似文献   

12.
Abstract— This study investigates the effects of subjecting zinc oxide (ZnO) thin films to laser irradiation. The optical, structural, and electrical properties of the as‐deposited and laser‐irradiated films at different laser energies were studied. The transmittances without/with laser irradiation showed a net increase from 85 to 92% (@550 nm) for 250‐nm ZnO films, indicating an improvement in sample crystal linity. In addition, laser treatment decreased the ZnO band gap. Composition structure analysis shows that the crystallinity increased when the laser energy increased. Thin‐film transistors (TFTs) with a ZnO active layer were fabricated. The mobility of as‐deposited ZnO TFT devices (0.19 cm2/V‐sec) increased more than 2.5 times for ZnO of unirradiated laser treatment (0.49 cm2/V‐sec).  相似文献   

13.
Abstract— The state of the art of large‐area low‐temperature TFT‐LCDs will be reported in this paper. High‐performance poly‐Si TFTs are expected to realize various applications such as system display where various signal‐processing functions are added to the display. In the past few years, low‐temperature poly‐Si thin‐film‐transistor (LTPS TFT) technology has made great progress, especially in the areas of excimer laser annealing (ELA) of high‐quality poly‐Si film, ion doping for large‐area doping, and high‐quality gate SiO2 film formation by using the low‐temperature PE‐CVD method. Also, technology trends and possible applications, such as a system displays, will be discussed.  相似文献   

14.
Two sapphire substrates were bonded using a fresnoite glass thin film as a sealant, by irradiation with a 1,064 nm ns laser. The sapphire close to the interface was examined by TEM, showing some structural defects due to the laser processing. Bond quality and strength were evaluated by scanning acoustic microscopy (SAM) and micro-chevron testing, respectively. Optimization of laser parameters lead to an improved processing speed (>1 mm/s) as well as an enhanced fracture toughness to 1.23 MPa m1/2.  相似文献   

15.
Recently microfluidic devices have emerged as a viable technology for the miniaturization of high throughput tools for analytical tasks related to structural biology such as screening of crystallization conditions and structural analysis. This work reports the manufacture of microfluidic chips in transparent thermoplastic polymers [poly(methylmethacrylate) (PMMA), and cyclic olefin copolymer (COC)] using two complementary technologies, injection moulding for the fabrication of the fluidic level and laser transmission welding for the sealing of the cover. A steel mould insert was produced by laser micro caving using a solid state laser radiation source (Nd:YAG, wavelength 1,064 nm). Fluidic chips of ~670 μm thickness comprising channels of 50 μm depth and width down to 50 μm were injection moulded in PMMA and COC. Joining of transparent thin cover film to the micro-injected fluidic level was performed by laser transmission welding using high power diode laser radiation (wavelength 940 nm) and an intermediate thin absorbing layer with a thickness of about several nanometers.  相似文献   

16.
Low‐temperature polycrystalline‐silicon (poly‐Si) thin‐film‐transistor (TFT) processes, based on PECVD amorphous‐silicon (a‐Si:H) precursor films and excimer‐laser crystallization, have been developed for application in the fabrication of active‐matrix liquid‐crystal‐displays (AMLCDs). The optimum process for depositing the precursor films has been identified. The relationship between excimer‐laser crystallization and poly‐Si film morphology has also been studied. Using these techniques, poly‐Si TFTs with a mobility of 275 cm2/V‐sec and on/off ratios of 1 × 107 have been fabricated.  相似文献   

17.
Direct current sputtering was used for deposition of Si film for precursor film of excimer laser annealing, n+‐Si/p+‐Si film for source/drain contact, and SiO2 film for gate insulator of polycrystalline silicon thin‐film transistor. Using these methods, poly‐Si thin‐film complementary metal oxide semiconductor inverter was fabricated by all sputtering process for the first time. The field‐effect mobility was, respectively, 6.5 and 12.5 cm2/Vs for n‐TFTs and p‐TFTs. This inverter exhibits a full rail‐to‐rail swing and abrupt voltage transfer characteristics over the entire voltage range, and the output voltage gain was ~117 at Vdd = 20 V.  相似文献   

18.
In this study, we developed a thin plasmonic color sheet (TPCS) embedded with Al subwavelength gratings for use in flexible optical transmission filters, and experimentally demonstrated its transmission characteristics. Al subwavelength gratings were formed in a freestanding thin poly-para-xylylene (parylene-N) film less than 1-μm thick by using electron beam (EB) direct writing and sacrificial etching. The fabricated TPCS contained Al subwavelength gratings with periods ranging from 400 nm to 600 nm, and succeeded in shifting the transmission peak wavelength from 510 nm to 650 nm in the visible range. The freestanding thin parylene-N film deposited by room-temperature chemical vapor deposition provided enough flatness to the TPCS with a height difference of 900 nm in a whole filter area, resulting in uniform transmission spectra. The experimentally obtained peak shift dependent on the grating period agreed well with theoretical calculation results.  相似文献   

19.
A novel wide range electrostatic microelectromechanical system floating Fabry Perot optical tunable filter (MEMS f-FPOTF) is modelled and analyzed in terms of its electro-mechanic behaviour. The composite beam approach has been used to model the floating Fabry Perot cavity. The floating dual membrane FPOTF consists of multi layer Si/SiO2/Si thin films with an optical cavity in the middle structure. The filter tuning range has been improved by utilizing bonded silicon on insulator wafers that permits the floating cavity to be deflected both ways; up and down. Electro-mechanic analysis shows a 7% (STRUCTURE1) and 5% (STRUCTURE2) difference between analytical and finite element modelling in which the 7% difference in light incident angle contributes to a 0.5 nm shift while the 5% difference in length of cavity indicates a 4 nm shift in MEMS f-FPOTF operating wavelength. This analysis validates the analytical modelling of this device as a wavelength selector in coarse wavelength division multiplexing.  相似文献   

20.
Abstract— The development of fabrication processes for polycrystalline‐silicon thin‐film transistors (poly‐Si TFTs) at low temperatures will be discussed. Rapid crystallization of silicon films through laser‐induced melt regrowth has the advantage of having a low thermal budget. Solid‐phase crystallization techniques have also been improved for low‐temperature processing. Passivation of the SiO2/Si interface and crystalline grain boundaries is important in achieving high‐carrier‐transport properties. Oxygen‐plasma and H2O‐vapor heat treatments are proposed for the effective reduction of the density of defect states. TFTs with high performances will be reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号