首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a balanced microstrip dual‐band bandpass filter (BPF) is designed. The proposed filter is achieved by employing a microstrip U‐shape half‐wavelength resonator, a folded stub‐loaded resonator and balanced microstrip/slotline transition structures. The center frequencies and the fractional bandwidths of the two differential‐mode (DM) passbands can be controlled independently by changing the physical lengths of the two resonators and the gaps between each resonator, respectively. The balanced microstrip/slotline transition structures can achieve a wideband common‐mode (CM) suppression. Meanwhile, the DM passbands are independent from the CM responses, which significantly simplify the design procedure. In addition, a wide DM stopband is also realized. In order to validate the design strategies, a balanced dual‐band BPF centered at 2.57 and 3.41 GHz was fabricated and a good agreement between the simulated and measured results is observed.  相似文献   

2.
In this article, a quadruple‐mode stub‐loaded resonator (QM‐SLR) is introduced and its four modes are excited using a simple approach, which can provide a dual‐band behavior. By changing the length of the loaded stubs, independently tunable transmission characteristics of the proposed quadruple‐mode stub‐loaded resonator were extensively described for filter design. Moreover, microwave varactors were adopted to represent the length variation of the loaded stubs for the dual‐band tunability. The equivalent circuit modeling of the open stub with microwave varactor was given and discussed. Then, adopting the compact quadruple‐mode stub‐loaded resonator with three varactors, an independently controllable dual‐band bandpass filter (BPF) was designed, analyzed, and fabricated. Its separated bandwidths and transmission zeros can be tuned independently by changing the applying voltage of the microwave varactors. A good agreement between simulated and measured results verified the design methodology. The proposed filter possesses compact size, simple structure, and excellent dual‐band performances. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:602–608, 2016.  相似文献   

3.
A stepped‐impedance‐stub loaded stepped‐impedance resonator (SISLSIR) is proposed to design a dual‐band bandpass filter. The even‐ and odd‐mode frequencies and the coupling strength of the proposed resonators can be independently designed and adjusted. A dual‐feedline structure is used to meet the required external couplings of the 2 passbands. Thus, both the center frequencies and the bandwidths of the 2 passbands can be independently controlled. A 6‐pole dual‐band filter with the passbands of 3300~3600 MHz and 4800~5000 MHz is successfully designed using the proposed method and fabricated with YBCO/MgO high‐temperature superconducting (HTS) wafer. The measured results of the filter exhibit high performance and match well with the simulations. The measured insertion losses are less than 0.2/0.3 dB, and the return losses are greater than 15/14 dB for the lower/upper passbands, respectively. The out‐of‐band rejection is greater than 68 dB up to 12 GHz.  相似文献   

4.
In this article, a double‐T‐shaped stub centrally loaded uniform impedance resonator (UIR) is introduced and its resonant characteristics are well clarified, which provided a simple approach for triple‐mode wideband bandpass filter (BPF) design. The double‐T‐shaped stub consists of a T‐shaped stub at the center of UIR and two shunt uniform‐impedance stubs at the T‐shaped stub. Furthermore, loading technique for zero‐voltage point is employed to guide design procedure from UIR to the proposed resonator. The resonant frequencies of the first three modes for the resonator can be free to adjust by the length of the UIR and the two kinds of stub. Finally, a compact wideband BPF is designed, fabricated, and measured. The measured results are in good agreement with the full‐wave simulation results. The realized wideband filter exhibits a 3 dB fractional bandwidth of 69.1% with good in‐band filtering performance, wide stopband, and sharp out‐of‐band rejection skirt.  相似文献   

5.
In this article, the shorted stub loaded stepped‐impedance resonator (SSLSIR) with the individually tunable first even resonant mode and first odd resonant mode is applied to design dual‐, tri‐, and quad‐band bandpass filters (BPFs). The SSLSIR dual‐band BPF with asymmetrical coupling is realized using the first even resonant modes and the first odd resonant modes of a set of SSLSIRs. Then, the high‐impedance feeding lines of SSLSIR dual‐band BPF is modified to produce a new passband, and thus a new tri‐band BPF is realized. The proposed quad‐band BPF consists of two sets of SSLSIRs with symmetrical coupling. Each of the designed circuits occupies a very compact size and has a good in‐band out‐of‐band performance. Good agreements are observed between the simulated and measured results. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:601–609, 2015.  相似文献   

6.
A compact quad‐channel high‐temperature superconducting diplexer based on stub‐loaded square ring resonator (S‐LSRR) is proposed. The proposed resonator consists of a square ring with symmetrically loaded two open‐circuited stubs and provides four resonant modes for quad‐channel applications. Even‐ and odd‐mode methods are applied to analyze the S‐LSRR. Analytical study shows that four resonant modes of one S‐LSRR can be designed in two pairs and applied to construct two of four channels of the designed diplexer. A square patch is added to the resonator for providing an additional parameter to tune the resonant modes. Based on the proposed resonator, a quad‐channel diplexer with center frequencies of 2.4, 3.2, 3.9, and 5.6 GHz is designed. For demonstration, the diplexer is fabricated on 2‐in‐diameter 0.5 mm‐thick MgO wafer with double sided YBa2Cu3Oy films and measured at 77 K. Good agreement between the simulation and measurement is obtained. The diplexer has a compact size of 0.25 λg × 0.45 λg, where λg is guided wave length at the center frequency of first channel.  相似文献   

7.
In this article, a new class of dual‐/tri‐band and ultra‐wideband (UWB) bandpass filters (BPFs) using novel multi‐mode resonators are proposed. The classical even‐/odd‐mode method is applied to analyze the resonant characteristics of the proposed resonators, which exhibit controllable resonant modes with different dimension parameters under the same configuration. According to the analysis, three resonators with quad‐/penta‐/sext‐mode resonant characteristics are obtained by choosing the specific dimension parameters. Then, the quad‐mode resonator is used to design a dual‐wideband BPF centred at 2.39/5.14 GHz with 3‐dB fractional bandwidths (FBWs) of 36.9%/18.9%, and the penta‐mode resonator is utilized to design an UWB BPF with 3‐dB FBW of 102.2%, whereas the sext‐mode resonator is applied to design a tri‐band BPF with centre frequencies of 2.09/3.52/5.46 GHz and 3‐dB FBWs of 11.3%/20%/12.1%. All these three filters are fabricated and measured, and the measured results are in good agreement with the simulated ones.  相似文献   

8.
In this study, a novel high selective UWB band pass filter (BPF) with dual notch band is presented. UWB BPF is realized using stub‐loaded multiple‐mode resonator (MMR). The MMR is constructed by loading a quintuple mode open stub at the centre in an asymmetric tri‐section stepped impedance resonator (ATSSIR). Five modes, including two odd modes and three even modes, placed within UWB band. Two transmission zeros generated by the fractal stub improve the passband selectivity greatly. Two half wavelength long fractal Hilbert resonators are embedded near I/O line to achieve notch bands at 5.1 and 5.9 GHz. Aperture‐backed interdigital coupled‐lines are implemented to improve the coupling. The proposed prototype is fabricated and tested. The measured insertion loss is observed to be within 1.5 dB over the passband. By virtue of two transmission zeros (TZs), on either side of the passband, at 5.1 and 5.9 GHz, respectively, the passband selectivity is achieved with measured roll‐off factor at around 34 dB/octave. The out‐of‐band rejection of the filter is greater than 22 dB up to 18 GHz. The simulated results are in good agreement with the measured responses.  相似文献   

9.
A novel compact balun‐diplexer applying new interdigital line resonators (ILRs) is presented in this article. It is found that the proposed ILR can not only reduce circuit size and but also realize high common mode rejection in differential mode operation frequency. By properly converting the symmetric four‐port balanced bandpass filter (BPF) to a three‐port device, a balun BPF with high selectivity and compact size are accomplished using ILRs. Then, the balun‐diplexer can be realized by combining two well‐designed balun filters with two 50 Ω transmission lines. The demonstrated balun‐diplexer with operation at 1.8 and 2.45 GHz have been designed, fabricated, and measured. Excellent performances have been observed. Specifically, 0.4 dB in‐band amplitude error, 1.8 in‐band phase error, more than 50 dB selectivity and 45 dB isolation are obtained. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:485–489, 2015.  相似文献   

10.
A balanced second‐order dual‐band bandpass filter (BPF) with independently controllable center frequencies and bandwidths based on coupled stepped‐impedance resonators (SIRs) is designed in this article. To obtain a dual‐band differential‐mode (DM) response, two pairs of SIRs with different resonant frequencies are employed in the design. The bandwidths of the two DM passbands can be independently tuned by adjusting the coupling gaps and coupling lengths of the corresponding resonators. In addition, three transmission zeros are realized to enhance the selectivity of the DM passbands. The microstrip‐slotline transition structure is utilized to achieve a wideband common‐mode (CM) suppression. Moreover, the DM responses are independent of the CM ones, which significantly simplify the design procedure. Finally, a balanced dual‐band BPF is designed to validate the design method and a good agreement between the simulated and measured results is observed.  相似文献   

11.
This article presents two novel resonators, that is, frequency selecting coupling structure loaded stepped‐impedance resonator (FSCSLSIR) and π‐section loaded FSCSLSIR. The resonator behaviors and guidelines are given to design FSCSLSIR dual‐band bandpass filter (BPF) and π‐section loaded FSCSLSIR triband BPF. The proposed dual‐ and triband BPF have very compact sizes of 0.13 λgd × 0.06 λgd and 0.115 λgt × 0.074 λgt, respectively. Moreover, good return loss, low insertion loss, and high band‐to‐band isolation can be observed, and the proposed FSCSLSIR dual‐band BPF has an ultrawide stopband from 5.79 to 36 GHz. The experimental results are in good agreement with the simulations. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:427–435, 2015.  相似文献   

12.
This article presents a dual‐plane structure high selectivity tri‐band bandpass filter (BPF) which consists of a pair of T‐shaped microstrip feed lines with capacitive source‐load coupling as well as spur lines embedded, and three resonators, i.e., a dual‐mode stub‐loaded stepped impedance resonator and two nested dual‐mode defected ground structure resonators. Using the intrinsic characteristics of the resonators and feed lines, nine transmission zeros near the passband edges and in the stopband can be generated to achieve high selectivity. An experimental tri‐band BPF located at 2.4/5.7 GHz [wireless local area networks (WLAN) application] and 3.5 GHz [worldwide interoperability for microwave access (WiMAX) application] has been simulated and fabricated. Good agreement between the simulated and measured results validates the design approach. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

13.
This letter presents a novel miniaturized differential dual‐band bandpass filter (BPF) using a single quad‐mode metal‐loaded dielectric resonator (DR). The differential dual‐band BPF is designed in a single‐cavity configuration with one quad‐mode DR and four feeding probes, featuring compact size. The rectangular DR is directly mounted on the bottom of the metal cavity and covered by a metal plate on the top surface. It allows two pairs of orthogonal modes (LSE10 and LSM10), which can be differentially excited and coupled by introducing proper perturbation for constructing dual‐band differential‐mode frequency response. To validate the proposed idea, a compact differential BPF with good performance using a quad‐mode DR cavity is designed, fabricated, and measured. The simulated and measured results with good agreement are presented.  相似文献   

14.
This article presents a novel bandpass filter (BPF) using two proximity‐coupled dual‐behavior resonators (DBRs). The employed DBR is implemented by a single shunt stub with the compact microstrip resonator cell at its open end instead of the traditional dual stubs in cross‐shape. Due to the adoptions of the proposed DBR and proximity‐coupling scheme, both the transverse and longitudinal dimensions of the proposed BPF are reduced significantly. To verify the proposed idea, a demonstration microstrip BPF is designed and fabricated, and good agreement between the simulated and measured results can be observed, showing low loss and high selectivity due to four transmission zeroes in the stopband.  相似文献   

15.
In this article, interdigital capacitor loaded co‐directional split ring resonators (CDSRRs) and their dual‐band bandpass filter applications are proposed. The proposed resonator is formed by nested open loop resonators having open ends at the same place unlike conventional split ring resonators (SRRs). In addition, the inner open loop resonator has interdigital capacitor located between the open ends. The proposed resonator exhibits dual resonance behavior with a small center frequency ratio. Both of resonance frequencies can be controlled due to the changes in the interdigital capacitor and the electrical length of the outer resonator. A dual‐band microstrip bandpass filter is designed by using the proposed CDSRR. Two CDSRRs are used to obtain two poles in each passband. Overall electrical length of the designed filter is 0.23 λg × 0.14 λg (0.0329 λg2), where λg is the guided wavelength for the used substrate at the lowest passband center frequency of 1.8 GHz. A small center frequency is obtained by adjusting the second passband at 2.27 GHz. A very wide upper stopband, closely spaced passbands, low insertion losses and high selectivity at both passbands can be obtained by means of the proposed structure. The designed filter was also fabricated and tested. The measured results show a very good agreement with the predicted results.  相似文献   

16.
In this paper, a balanced dual‐band bandpass filter (BPF) with high selectivity and low insertion loss performance is presented by employing stub loaded resonators (SLRs) and stepped impedance resonators (SIRs) into balanced microstrip‐slotline (MS) transition structures. The balanced MS transition structures can achieve a wideband common‐mode (CM) suppression which is independent of the differential‐mode (DM) response, significantly simplifying the design procedure. Six varactors are loaded into the resonators to achieve the electrical reconfiguration. The proposed balanced dual‐band BPF can realize quasi‐independently tunable center frequencies and bandwidths. A tuning center frequency from 2.48 to 2.85 GHz and a fractional bandwidth (20.16%‐7.02%) with more than 15 dB return loss and less than 2.36 dB insertion loss are achieved in the first passband. The second passband can realize a tuning center frequency from 3.6 to 3.95 GHz with more than 12 dB return loss and less than 2.38 dB insertion loss. A good agreement between the simulated and measured results is observed.  相似文献   

17.
In this study, we propose a stepped‐impedance‐stub loaded interdigital capacitor resonator for design of a dual‐band band‐pass filter with a large bandwidth ratio. The presented resonator has strong and weak couplings in the upper passbands (UPs) and lower passbands (LPs), respectively, so as to form a large upper/lower bandwidth ratio. Adopting a dual‐branch phase‐matched feedline structure can meet the external quality factors required for the UP/LP. Therefore, these two passbands, defined by their respective center frequencies and bandwidths, can be manipulated independently. A four‐pole dual‐band example filter with a lower bandwidth of 20 MHz at 1576 MHz and an upper bandwidth of 200 MHz at 2450 MHz is successfully designed on an YBCO/MgO superconducting wafer. The filter exhibits excellent frequency responses. The upper/LPs show insertion losses below 0.07/0.22 dB and return losses above 15.3/15.3 dB. The stopband rejection is better than 57 dB until the first spurious passband up to 6150 MHz (3.9fL).  相似文献   

18.
A novel half‐mode substrate integrated waveguide (HMSIW) based dual‐band bandpass filter (DBBPF) is proposed. Back to back connected two defected ground structure (DGS) resonators on the top layer of HMSIW cavity constitute the passband with two transmission zeros (TZs) at a lower frequency. The higher modes TE301 and TE302 of HMSIW cavity give the passband response at higher frequency using the mode shifting technique with slot perturbation. The source‐load coupling has been used to create finite frequency TZs to improve the selectivity of the second passband. Therefore, the proposed filter gives two widely separated passbands, center frequencies (CFs) at 5.83 and 18.1 GHz with an attenuation of greater than 10 dB between the passbands. The synthesized filter is fabricated using a low‐cost single layer PCB process, and the measured S‐parameters are almost mimic the EM‐simulation results.  相似文献   

19.
Two dual‐band band pass filters (BPF) using stub‐loaded open‐loop (SLOL) resonator are presented in this article. A novel coupling tuning method by changing the relative coupling position of the resonators is proposed to control the bandwidth of each passband in a wide range. Transmission zeros are created to improve the selectivity by source‐load coupling. Because of the large ratio of two bandwidths, a novel dual‐band matching method is proposed to match the different load impedances at two passband frequencies to the same source impedance. Hence, relax the fabrication requirement of gap. The proposed dual‐band band pass filter is designed and fabricated. The measured 3 dB fractional bandwidths (FBWs) of two 2.45/5.25 GHz dual‐band BPFs are 6.5%/14.5% and 9.8%/5.5%, respectively. The results are in good agreement with the simulation. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:367–374, 2014.  相似文献   

20.
This article presents a novel multi‐mode microstrip resonator. Using the even‐odd‐mode method, its resonance characteristics are analyzed and the design graphs are given. Each mode equivalent circuit is a λ/4 stepped impedance resonator (SIR), so the proposed resonator has a compact size and the higher harmonics can be tuned in a wide range. Stub–stub coupling is introduced to split two identical modes and produce two transmission zeros (TZs). Then a tri‐band filter operating at 1.5, 2.4, and 3.8 GHz is designed using the proposed resonator. The three center frequencies and bandwidths can be independently controlled. By tuning the impedance and length ratios of the stubs, wide upper stopband is achieved. Finally, the designed filter is fabricated and measured, and the measured results agree well with the simulated ones. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:559–564, 2016.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号