首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a robust fault tolerant control for an induction motor in presence of inter‐turn short‐circuit fault. The control strategy is based on Backstepping approach and high order sliding mode observer. That ensures a high‐performance control and a good dynamic in presence of inter‐turn short‐circuit fault. The stability of the Backstepping control is proved by Lyapunov theory. A high order sliding mode observer is used for rotor flux estimation. The performances of the fault tolerant control scheme will be examined via numerical simulation and validated through hardware implementation using MATLAB/Simulink with dSpace signal card. The analysis' results show the robustness of the proposed method for the tolerance of the inter‐turn short‐circuit fault.  相似文献   

2.
With a focus on aero‐engine distributed control systems (DCSs) with Markov time delay, unknown input disturbance, and sensor and actuator simultaneous faults, a combined fault tolerant algorithm based on the adaptive sliding mode observer is studied. First, an uncertain augmented model of distributed control system is established under the condition of simultaneous sensor and actuator faults, which also considers the influence of the output disturbances. Second, an augmented adaptive sliding mode observer is designed and the linear matrix inequality (LMI) form stability condition of the combined closed‐loop system is deduced. Third, a robust sliding mode fault tolerant controller is designed based on fault estimation of the sliding mode observer, where the theory of predictive control is adopted to suppress the influence of random time delay on system stability. Simulation results indicate that the proposed sliding mode fault tolerant controller can be very effective despite the existence of faults and output disturbances, and is suitable for the simultaneous sensor and actuator faults condition.  相似文献   

3.
The attitude fault‐tolerant control problem for a satellite with reaction‐wheel failures, uncertainties, and unknown external disturbances is investigated in this paper. Firstly, an iterative learning observer (ILO) is proposed to achieve fault detection, isolation, and estimation. Secondly, based on the ILO, a third‐order sliding mode controller is proposed to stabilize the satellite attitude rapidly under unknown external disturbances and reaction‐wheel faults. Thirdly, the asymptotically stability of the ILO and the third‐order sliding mode controller is proved by using the Lyapunov stability theory. Finally, simulation results demonstrate that the proposed control scheme is more effective and feasible by comparing with other fault‐tolerant control approach.  相似文献   

4.
This paper is concerned with the sliding mode control of uncertain nonlinear systems against actuator faults and external disturbances based on delta operator approach. The nonlinearity, actuator fault, and external disturbance are considered in this study, and the bounds of Euclidean norms of the nonlinearity and the specific lower and upper bounds of the actuator faults and the disturbances are unknown knowledge. Our attention is mainly focused on designing a sliding mode fault‐tolerant controller to compensate the effects from the nonlinearity, unknown actuator fault, and external disturbance. Based on Lyapunov stability theory, a novel‐adaptive fault‐tolerant sliding mode control law is deigned such that the resulting closed loop delta operator system is finite‐time convergence and the actuator faults can be tolerated, simultaneously. Finally, simulation results are provided to verify the effectiveness of the proposed control design scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
王旭  沈艳霞  吴定会 《测控技术》2018,37(10):148-152
针对一类满足Lipschitz条件的仿射非线性系统,提出一种执行器故障重构与容错控制方法。通过非奇异变化矩阵对系统进行降阶,设计出滑模故障重构观测器,优化滑模策略,使滑模故障重构观测器渐进估计系统的状态,并给出稳定性分析。运用等价输出控制方法直接获取故障信息,实现执行器故障的检测与重构。设计出主动容错控制器,通过补偿控制,完成执行器故障的容错控制。最后通过数值仿真验证了方法的可行性与有效性。  相似文献   

6.
This article proposes fault‐tolerant finite‐time attitude tracking control of a rigid spacecraft actuated by four reaction wheels without unwinding problem in the presence of external disturbances, uncertain inertia parameter, and actuator faults. First, a novel antiunwinding finite‐time attitude tracking control law is derived with a designed control signal which works within a known actuator‐magnitude constraint using a continuous nonsingular fast terminal sliding mode (NFTSM) concept. Second, a finite‐time disturbance observer (FTDO) is introduced to estimate a lumped disturbance due to external disturbances, uncertain inertia parameter, actuator faults, and input saturation. Third, a composite controller is developed which consists of a feedback control based on the continuous NFTSM method and compensation term based on the FTDO. The global finite‐time stability is proved using Lyapunov stability theory. Moreover, the singularity and unwinding phenomenon are avoided. Simulation results are conducted under actuator constraints in the presence of external disturbances, inertia uncertainty, and actuator faults and results are illustrated to show the effectiveness of the proposed method. In addition, to show the superiority of the proposed control method over the recently reported control methods, comparative analysis is also presented.  相似文献   

7.
This study investigates a finite‐time fault‐tolerant control scheme for a class of non‐affine nonlinear system with actuator faults and unknown disturbances. A global approximation method is applied to non‐affine nonlinear system to convert it into an affine‐like expression with accuracy. An adaptive terminal sliding mode disturbance observer is proposed to estimate unknown compound disturbances in finite time, including external disturbances and system uncertainties, which enhances system robustness. Controllers based on finite‐time Lyapunov theory are designed to force tracking errors to zero in finite time. Simulation results demonstrate the effectiveness of proposed method.  相似文献   

8.
The control effectors of reusable launch vehicle (RLV) can produce significant perturbations and faults in reentry phase. Such a challenge imposes tight requirements to enhance the robustness of vehicle autopilot. Focusing on this problem, a novel finite‐time fault‐tolerant control strategy is proposed for reentry RLV in this paper. The key of this strategy is to design an adaptive‐gain multivariable finite‐time disturbance observer (FDO) to estimate the synthetical perturbation with unknown bounds, which is composed of model uncertainty, external disturbance, and actuator fault considered as the partial loss of actuator effectiveness in this work. Then, combined with the finite‐time high‐order observer and differentiator, a continuous homogeneous second‐order sliding mode controller based on the terminal sliding mode and super‐twisting algorithm is designed to achieve a fast and accurate RLV attitude tracking with chattering attenuation. The main features of the integrated control strategy are that the adaptation algorithm of FDO can achieve non‐overestimating values of the observer gains and the second‐order super‐twisting sliding mode approach can obtain a more elegant solution in finite time. Finally, simulation results of classical RLV (X‐33) are provided to verify the effectiveness and robustness of the proposed fault‐tolerant controller in tracking the guidance commands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a sensorless fault tolerant controller for induction motors is developed. In the proposed approach, a robust controller based on backstepping strategy is designed in order to compensate for both the load torque disturbance and the rotor resistance variation caused by the broken rotor bars faults. The proposed approach needs neither fault detection and isolation schemes nor controller re-design. Moreover, to avoid the use of speed and flux sensors, a second order sliding mode observer is introduced to estimate the flux and the speed. The observer converges in a finite time and leads to good estimates of the flux and the speed even in the presence of the rotor resistance variation and the load torque disturbance. Since the observer converges in the finite time, the stability of the closed-loop system (controller with observer) is shown in two steps. First, the boundedness of the closed-loop system trajectories before the convergence of the observer is proved. Second, the convergence of the closed-loop system trajectories is proved after the convergence of the observer. To highlight the efficiency and applicability of the proposed control scheme, simulation and experimental results are conducted for a 1.5 kW induction motor.  相似文献   

10.
An integral sliding mode fault‐tolerant control method is proposed to deal with faults with matched uncertainties, unmatched uncertainties, and input saturation. Integral sliding mode, control allocation, and parameter identification are included in this method. The Lyapunov stability conditions of the integral sliding mode control for uncertainties and input saturation, respectively, are obtained, which denote the robustness extent of the controller. The direct method for control allocation is improved by adding a judgement before calculating for each facet. Finally, the fault‐tolerant scheme is applied to a six‐wheel spacecraft and simulations are given to show its effectiveness.  相似文献   

11.
In this paper, a robust actuator‐fault‐tolerant control (FTC) system is proposed for thrust‐vectoring aircraft (TVA) control. To this end, a TVA model with actuator fault dynamics, disturbances, and uncertain aerodynamic parameters is described, and a local fault detection and identification (FDI) mechanism is proposed to locate and identify faults, which utilizes an adaptive sliding‐mode observer (SMO) to detect actuator faults and two SMOs to identify and estimate their parameters. Finally, a fault‐tolerant controller is designed to compensate for these actuator faults, disturbances, and uncertain aerodynamic parameters; the approach combines back‐stepping control with fault parameters and a high‐order SMO. Furthermore, the stability of the entire control system is validated, and simulation results are given to demonstrate the effectiveness and potential for this robust FTC system.  相似文献   

12.
The fault‐tolerant control and vibration suppression for flexible spacecraft without angular velocity measurement are investigated. External disturbances, actuator faults, unknown angular velocity, and flexible vibration are addressed simultaneously. Firstly, a model‐free adaptive supertwisting state observer and an angular velocity calculation algorithm in one step are developed by using attitude information only, which can estimate the angular velocity in finite time. Then, on the basis of angular velocity estimation, a novel continuous multivariable integral sliding mode (CMISM) is proposed for the first time, which is a combination of continuous nominal controller and a modified multivariable twisting controller to reject disturbances and faults. The CMISM can stabilize attitudes in finite time and attenuate chattering effectively. Furthermore, the input shaping technique is developed to achieve effective vibration suppression of the flexible appendages. Finally, the efficiency of the proposed method is illustrated by numerical simulations.  相似文献   

13.
In order to achieve high‐performance speed regulation for sensorless interior permanent magnet synchronous motors (IPMSMS), a robust backstepping sensorless control is presented in this paper. Firstly, instead of a real mechanical sensor, a robust terminal sliding mode observer is used to provide the rotor position. Then, a new super‐twisting algorithm (STA) based observer is designed to obtain estimates of load torque and speed. The proposed observer ensures finite‐time convergence, maintains robust to uncertainties, and eliminates the common assumption of constant or piece‐wise constant load torque. Finally, a sensorless scheme is designed to realize speed control despite parameter uncertainties, by combining the robust backstepping control with sliding mode actions and the presented sliding mode observers. The stability of the observer and controller are verified by using Lyapunov's second method to determine the design gains. Simulation results show the effectiveness of the proposed approach.  相似文献   

14.
This paper proposes a sliding‐mode linearization torque control (SMLTC) for an induction motor (IM). An ideal feedback linearization torque control method is firstly adopted in order to decouple the torque and flux amplitude of the IM. However, the system parameters are uncertainties, which will influence the control performance of the IM in practical applications. Hence, to increase the robustness of the IM drive for high‐ performance applications, this SMLTC aims to improve the immunity of those uncertainties. We modify the flux observer of Benchaib and Edwards [15] by means of the adaptive sliding‐mode method. This not only eliminates the estimation of the uncertainty bounds, but also improves the performance of sliding control. In addition, a practical application of the proposed SMLTC, with a model reference adaptive control (MRAC) scheme incorporated as the inner and outer loop controller used for position control, is also presented. Some experiments are presented to verify the control theory and demonstrate the robustness and effectiveness of the proposed SMLTC.  相似文献   

15.
In this work, a robust control scheme for variable speed wind turbine system that incorporates a doubly feed induction generator is described. The sliding mode controller is designed in order to track the optimum wind turbine speed value that produces the maximum power extraction for different wind speed values. A robust sliding mode observer for the aerodynamic torque is also proposed in order to avoid the wind speed sensors in the control scheme. The controller uses the estimated aerodynamic torque in order to calculate the reference value for the wind turbine speed. Another sliding mode control is also proposed in order to maintain the dc‐link voltage constant regardless of the direction of the rotor power flow. The stability analysis of the proposed controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. Finally, the simulation results show that the proposed control scheme provides a high‐performance turbine speed control, in order to obtain the maximum wind power generation, and a high‐performance dc‐link regulation in the presence of system uncertainties.  相似文献   

16.
17.
A passivity‐based sliding mode control for a class of second‐order nonlinear systems with matched disturbances is proposed in this paper. Firstly, a nonlinear sliding surface is designed using feedback passification, in which the passivity is employed to guarantee the closed‐loop system's stability. The passivity‐based controller comprising a discontinuous term guarantees globally asymptotical convergence to the sliding surface. A sliding mode‐based control law that satisfies the reaching and sliding condition is also developed. Moreover, the passivity‐based sliding mode observer is also developed to effectively estimate the system states. Compared with conventional sliding mode control, the proposed control scheme has a shorter reaching time; and hence, the system performance is less affected by disturbances, thus eliminating the need to increase the control input gain. Finally, simulation results demonstrate the validity of the proposed method.  相似文献   

18.
感应电机高阶终端滑模磁链观测器的研究   总被引:2,自引:0,他引:2  
史宏宇  冯勇 《自动化学报》2012,38(2):288-294
提出了基于高阶非奇异终端滑模的感应电机转子磁链观测方法,用于实现感应电机的按转子磁链定向控制. 设计了非奇异终端滑模面及观测器的控制策略,利用所设计的控制策略推导出电机转子磁链信息. 为了抑制常规滑模存在的抖振现象,设计了定子电流观测器的高阶滑模控制律,可将控制信号直接用于电机转子磁链的估计. 较常规滑模观测器,所提方法具有较高的观测精度,并对电机参数变化具有良好的鲁棒性.仿真结果验证了方法的有效性.  相似文献   

19.
A unified solution is presented to the tracking control problem of Euler–Lagrange systems with finite‐time convergence. A reconstruction module is designed to estimate the overall of unmodeled dynamics, disturbance, actuator misalignment, and multiple actuator faults. That reconstruction is accomplished in finite time with zero error. A nonsingular terminal sliding mode controller is then synthesized, and the resultant closed‐loop system is also shown to be finite‐time stable with the reference trajectory followed in finite time. Unlike most sliding mode control methods to handle system uncertainties, the designed control has less conservativeness and stronger fault tolerant capability. A rigid spacecraft system is used to demonstrate the effectiveness and potential of the proposed scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A robust fault‐tolerant attitude control scheme is proposed for a launch vehicle (LV) in the presence of unknown external disturbances, mismodeling dynamics, actuator faults, and actuator's constraints. The input‐output representation is employed to describe the rotational dynamics of LV rendering three independently decoupled second order single‐input‐single‐output (SISO) systems. In the differential algebraic framework, general proportional integral (GPI) observers are used for the estimations of the states and of the generalized disturbances, which include internal perturbations, external disturbances, and unknown actuator failures. In order to avoid the defects of the conventional sliding surface, a new nonlinear integral sliding manifold is introduced for the robust fault‐tolerant sliding mode controller design. The stability of the GPI observer and that of the closed‐loop system are guaranteed by Lyapunov's indirect and direct methods, respectively. The convincing numerical simulation results demonstrate the proposed control scheme is with high attitude tracking performance in the presence of various disturbances, actuator faults, and actuator constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号