首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y型沸石/炭杂化膜的制备及其气体分离性能   总被引:3,自引:1,他引:2  
以聚酰胺酸为前驱体,Y型沸石为掺杂物,经高温炭化制备了Y型沸石/炭杂化膜.通过纯组分气体(H2,CO2,O2,N2)的渗透实验对杂化膜的气体渗透性能进行测定,并使用透射电镜,X射线衍射对杂化膜的微结构进行表征.研究了沸石的含量以及炭化温度对杂化炭膜的气体渗透性能和微结构的影响.结果表明,随着膜内沸石含量的提高,Y型沸石/炭杂化膜的气体渗透性能明显提高,而随着炭化温度的升高,Y型沸石/炭杂化膜的渗透系数降低,选择性提高.与纯炭膜相比,Y型沸石/炭杂化膜在保持高O2N2选择性的前提下,其渗透性能显著提高.炭化温度为700℃,沸石含量为15%,Y型沸石/炭杂化膜O2的气体渗透系数为501 bareer,O2/N2选择性为15.6.当炭化温度超过800℃以后,杂化膜中的沸石晶体结构被破坏,其气体渗透系数接近纯炭膜的气体渗透系数.因此,保持沸石孔道结构的完整是制备高性能沸石/炭杂化膜的关键因素之一.  相似文献   

2.
邱俊  王建刚  金华 《化学世界》2011,52(1):39-42,45
采用盐酸脱铝-碱金属或碱土金属离子交换制备了改性BEA沸石催化剂,并进行催化剂XRD、SEM表征.以上述改性BEA沸石为催化剂、以异丙醇为氢源,通过MPV反应考察了催化剂还原香茅醛合成香茅醇的性能.结果表明,在环化合成异胡薄荷醇和MPV还原合成香茅醇的两种竞争反应中,脱铝-离子交换改性沸石Cs-BEA对于MPV反应合成...  相似文献   

3.
采用二次生长法制备完备的MFI型分子筛膜,在高温脱除模板剂后测试其CO2/N2分离性能,分离因子低,说明膜存在较大的缺陷。采用纳米SiO2对分子筛膜进行修复,SiO2修复后的分子筛膜对CO2/N2分离因子由1.6提高到5.0,且修复后的分子筛膜的性能很稳定。此外,该修复方法具有良好的重复性,用于多个具有低分离因子的膜都得到了比较好的效果。  相似文献   

4.
A simple approach has been developed to synthesize the carbon/zeolite T composite membrane materials with the high gas separation performance. The precursors of the composite membrane are composed of polyimide matrix and dispersed zeolite T particles. The composite membranes prepared by pyrolysis at 973 K show excellent gas (H2, CO2, O2, N2, and CH4) permeability and selectivity (O2/N2, CO2/CH4) for both single gas and mixed-gas. The gas separation performance of the composite membranes can be controlled in a wide range by only changing the zeolite T particle size. The maximum selectivity of O2 over N2 (21/79 mol%) for the composite membranes with the least zeolite T particle (0.5 μm) is 15 with an O2 permeability of 347 Barrers (1 Barrer = 7.5 × 10−18 m2 s−1 Pa−1) and the selectivity of CO2 over CH4 (50/50 mol%) reaches a value of 179 with a CO2 permeability of 1532 Barrers. It is believed that the increase of gas permeability is attributed to the ordered microchannels in the zeolite and the interfacial gaps formed between zeolite and carbon matrix in the composite membranes. And the gas selectivity is tuned by the size of interfacial gaps which are varied with the zeolite particle size. This technique will provide a simple and convenient route to efficiently improve the trade-off relationship between the permeability and the selectivity and enable the construction of carbon-based composite materials with novel functionalities in membrane science.  相似文献   

5.
综述了MFI型沸石分子筛的渗透分离性能,探讨了其可能的分离机理,并介绍了包括膜分离与经在内的前沿进展。  相似文献   

6.
纳滤膜对无机盐水溶液脱盐性能的研究   总被引:5,自引:0,他引:5  
选择了NE和HL两种纳滤膜对NaCl、KCl、Na2SO4、MgCl2、CaCl2及MgSO4等6种无机盐水溶液体系进行分离实验;考察纳滤膜分离性能随操作压力、料液浓度、无机盐种类等变化的影响及纳滤膜脱盐的稳定性,得到纳滤膜一些脱盐的规律。  相似文献   

7.
Silicoaluminophosphate (SAPO) membranes with Si/Al gel ratios from 0.05 to 0.3 were synthesized by in situ crystallization onto porous, tubular stainless steel support. Pure SAPO-34 membranes were obtained when the Si/Al ratio was 0.15 or higher. The adsorbate polarizability correlated with the adsorption capacity on SAPO-34, and the amounts of gases adsorbed were in the order: CO2 > CH4 > N2 > H2. The Si/Al ratio did not affect the pore volume significantly, but it changed the CO2 and CH4 adsorption equilibrium constants. The SAPO-34 membranes effectively separated CO2 from CH4 for feed pressures up to 7 MPa. At 295 K, for a pressure drop of 138 kPa and a 50/50 feed, the CO2/CH4 selectivity was 170 for a membrane with a Si/Al gel ratio of 0.15. At 7 MPa, the CO2/CH4 selectivity was 100 and the CO2 permeance was 4 × 10−8 mol/(m2 · s · Pa) at 295 K. This membrane was also separated CO2/N2 (selectivity = 21) and H2/CH4 (selectivity = 32) mixtures at 295 K and a pressure drop of 138 kPa. Competitive adsorption and difference in diffusivities are responsible for CO2/CH4 and CO2/N2 separations, whereas the H2/CH4 separation was due to diffusivity differences. For a membrane with Si/Al gel ratio of 0.1, a mixture of SAPO-34 and SAPO-5 formed, and the CO2/CH4 selectivity was lower.  相似文献   

8.
The separations of ethylene/ethane and propylene/propane using polysulfone‐silica nanocomposite membranes were studied. Silica nanoparticles were prepared via sol‐gel method and the membranes by phase inversion. Characterization by Fourier transform spectroscopy and scanning electron microscopy indicated a good distribution of silica nanoparticles in the polymer matrix and also a good compatibility between the two phases. The performances of the prepared membranes in ethylene‐ethane and propylene‐propane separation were evaluated. The results showed the increments in gas permeability and selectivity by silica. Higher silica contents increased the solubility coefficient and reduced the diffusion coefficient of gases. The plasticization pressure of polysulfone was increased by incorporating the silica nanoparticles in polymer.  相似文献   

9.
A method to calculate the steady-state multicomponent mass transfer in heterogeneous structures is presented. For this, different transport mechanisms represent different regions inside the composite system. The solving scheme allows the calculation of the molar flow rates along the different transport pathways and the estimation of unknown transport parameters based on experimental data.

The steady-state mass transfer of hydrogen and sulfur hexafluoride through a sinter metal supported MFI zeolite membrane is examined as a model system. The support is simulated using the dusty gas model, the molecules passing the zeolite layer may follow transport mechanisms like Knudsen diffusion, surface diffusion or activated gas diffusion. The configuration used, with data from single gas experiments, can predict the binary system only at high temperatures. The problems arising at low temperatures are due to the oversimplified assumption that adsorbed and desorbed molecules do not interact on their way through the MFI zeolite micropores.

However, because of the modular structure of the approach, it can be easily extended to more advanced transport models to account for interactions between the different molecules. And the method can be applied equally well to other systems, such as palladium composite membranes or membranes with catalytic activity.  相似文献   


10.
Zeolite membranes, which were composed of ETS-4 with Na cations, were prepared on porous -alumina tubes by hydrothermal synthesis. The membranes, which were formed under optimized conditions, sharply rejected molecules with sizes larger than 0.4 nm. For mixtures of N2–CO2, N2–O2, N2–Ar and N2–CH4 systems, N2 permeated faster than the coexisting gas. The N2/O2 separation factor for an equimolar mixture was in the range of 2.3–3.5, and the N2 permeance was in the range of (0.55–2.8)×10−8 mol m−2 s−1 Pa−1 at permeation temperatures of 283–333 K. Moisture had some effect on the permeation properties for N2–O2 mixtures. The separation factor for the N2/CH4 system was larger than that of the N2/O2 system. When the membrane was ion exchanged with either Li+ or Sr2+, the separation factors for N2/O2 and N2/CH4 systems increased, while the permeances decreased.  相似文献   

11.
Separation properties of a mordenite membrane for water–methanol–hydrogen mixtures were studied in the temperature range from 423 to 523 K under pressurized conditions. The mordenite membrane was prepared on the outer surface of a porous alumina tubular support by a secondary-growth method. It was found that water was selectively permeated through the membrane. The separation factor of water/hydrogen and water/methanol were 49–156 and 73–101, respectively. Even when only hydrogen was fed at 0.5 MPa, its permeance was as low as 10−9 mol m−2 s−1 Pa−1 up to 493 K, possibly suggesting that water pre-adsorbed in the micropores of mordenite hindered the permeation of hydrogen. The hydrogen permeance dramatically increased to 6.5 × 10−7 mol m−2 s−1 Pa−1 at 503 K and reached to 1.4 × 10−6 mol m−2 s−1 Pa−1 at 523 K because of the formation of cracks in the membrane. However, the membrane was thermally stabilized in the presence of steam and/or methanol.  相似文献   

12.
Separation of gases through polymeric membrane by selective transport has immense advantages such as light weight, economical, high process flexibility, and space requirements. Fabrication methods of polymeric membrane (polysulfone, polyimide, polyamide, polycarbonate) and their properties along with fundamental principles for gas separation mechanism are discussed in this review. Polysulfone membranes are fabricated by dry/wet phase inversion process to investigate membrane properties. Polyimide membranes show great potential for gas separation and reveal good selectivity for CO2/N2 and CO2/CH4 gas pairs. Transport characteristics of polycarbonate membrane are improved by functionalization. Superior properties allow potential use of polymeric membranes in large-scale industrial applications.  相似文献   

13.
分子筛膜制备技术   总被引:6,自引:1,他引:5  
综述了近十余年来分子筛膜制备技术的进展,详细介绍了评述了分子筛膜的制备方法如原位水热合成法,二次生长法,汽相法等合成方法及其优缺点,此外还介绍了膜上缺陷的形成及其去除方法。  相似文献   

14.
Interfacial void‐free mixed‐matrix membranes (MMMs) of polyimide (PI)/zeolite were developed using 13X and Linde type A nano‐zeolites and tested for gas separation purposes. Fabrication of a void‐free polymer‐zeolite interface was verified by the decreasing permeability developed by the MMMs for the examined gases, in comparison to the pure PI membrane. The molecular sieving effect introduced by zeolite 13X improved the CO2/N2 and CO2/CH4 selectivity of the MMMs. Separation tests indicated that the manufactured nanocomposite membrane with 30 % loading of 13X had the highest permselectivity for the gas pairs CO2/CH4 and CO2/N2 at the three examined feed pressures of 4, 8 and 12 atm.  相似文献   

15.
采用水热合成法,以纯SiO2为源物质,在介孔Y2O3掺杂的ZrO2(YZ)及大孔α-Al2O3支撑体上制备出高质量的MFI型沸石分子筛膜,通过H2/n-C4H10气体混合物的渗透分离和p-xylene的蒸发研究了不同支撑体上MFI型沸石分子筛膜分离性能,在较低温度范围,YZ支撑的MFI型沸石分子筛膜中n-C4H10的渗透率比Al2O3支撑的膜高很多,最大n-C4H10与H2的分离率达到500,Al2O3支撑的膜中py-xylene的蒸发流量随时间下降很快,而YZ支撑的膜中的蒸发流量则变化缓慢,用XRD对膜的晶体结构进行分析,通过多种温度下热处理不同支撑体上的膜样品研究了其热稳定性与支持体材料的关系,YZ支撑的MFI型沸石分子筛膜的MFI结构在1000摄氏度后仍能保持,而Al2O3支撑的膜950摄氏度时已完全转变为石英相,研究结果表明,YZ支撑的MFI型沸石分子筛膜比Al2O3支撑的膜表现出更好的厌不性,热稳定性以及抗阻塞性。  相似文献   

16.
《分离科学与技术》2012,47(6):859-866
Binary and ternary component mixed matrix membranes comprised of zeolite 4A and p-nitroaniline (pNA) in the polycarbonate (PC) matrix were prepared and appraised in gas separation. For comparison, homogenous membranes of PC and PC/pNA membranes were also investigated. The membranes were utilized to separate binary mixtures of CO2/CH4, H2/CH4, and CO2/N2. The effect of feed composition on the separation performance of membranes was investigated. Separation factors and ideal selectivities were similar for the PC membrane. A similar trend was also observed with the PC/pNA membrane. The separation factors of the PC/pNA membrane for CO2/CH4 were almost twice as high as those of the PC membrane regardless of the feed composition. The ideal selectivities were, however, higher than separation factors for PC/zeolite 4A and PC/pNA/zeolite 4A membranes. The PC/ pNA/zeolite 4A membrane has separation factors of 18 for 77% CO2/ 23% CH4 mixture, and 40 for 20% CO2/ 80% CH4 mixture, respectively. The separation factors of the mixed matrix membranes depended on the feed composition strongly. The PC/ pNA/zeolite 4A membrane had higher separation factors and lower permeabilities than the PC/zeolite 4A membrane. pNA assisted to eradicate partly the detrimental effects of interfacial voids and improved the molecular sieving effect of zeolite 4A dispersed in the PC.  相似文献   

17.
《分离科学与技术》2012,47(9):1255-1269
ABSTRACT

The effect of the degree of deacetylation in chitosan composite membranes on their pervaporation performance for ethanol dehydration was investigated. The degree of deacetylation of chitosans was measured by using an infrared spectroscopic method and elemental analysis. The chitosan composite membranes were prepared by coating a chitosan solution onto a microporous polyethersulfone membrane with 3–7 nm pore sizes. Then the surface of the top layer (chitosan) of well-dried membranes was crosslinked with sulfuric acid, and pervaporation experiments for binary mixtures (water—ethanol) were carried out at various conditions. In the case of a chitosan membrane with a high degree of deacetylation, the flux increases while the separation factor decreases compared with membranes with a low degree of deacetylation.  相似文献   

18.
Fe-modified ZSM-5 zeolites (Si/Al = 25) were prepared by adopting the liquid ion-exchange method with nitrate and oxalate of iron as Fe precursors and their catalytic performance was studied in the N2O decomposition reaction. The results of FT-IR and H2-TPR investigations indicated that (i) part of the iron ions could replace Brönsted acid protons at the straight channel wall (α sites), intersection of straight and sinusoidal channels (β sites), and sinusoidal channel wall (γ sites) within the ZSM-5 zeolite; and (ii) different Fe precursors gave rise to various distributions of α, β, and γ sites. We observed that the Fe-ZSM-5 catalyst prepared with iron oxalate as Fe precursor outperformed the ones prepared with iron nitrate as Fe precursor in the direct decomposition of N2O. Furthermore, the catalytic activity of iron ions located at the α sites was higher than those of iron ions located at the β and γ sites.  相似文献   

19.
二氧化硅复合膜展现出的耐酸性和稳定性在渗透汽化领域有着广阔的应用前景.本文采用真空抽吸浸渍法制备二氧化硅复合膜的支撑层,得到高通量二氧化硅复合膜.本文对支撑层真空抽吸的最优条件进行探究,并采用扫描电镜对膜层的表面、截面形貌结构进行表征.结果表明,当支撑层溶胶质量浓度为2%,真空抽吸时间为10 s,真空抽吸压力为0.10...  相似文献   

20.
黄腊梅  张永明 《精细化工》2012,29(3):262-265,302
采用原位晶化法制备含磷的PY型分子筛,并用X射线衍射(XRD)、程序升温氨脱附(NH3-TPD)等测试方法对磷改性的PY型分子筛进行了表征。结果表明,磷的引入不影响分子筛的晶形,分子筛的相对结晶度变化很小,晶胞收缩,晶胞常数减小;分子筛的硅铝摩尔比(简称硅铝比,下同)增大。适量磷(质量分数0.1%)的引入降低了催化剂的总酸量、弱酸量和强酸量,增加了催化剂的中强酸的酸量。因此,可以有效调变催化剂的酸量和酸强度。在小型固定流化床装置上对催化剂的反应性能进行评价,发现与Y型催化剂相比,PY型催化剂在总液收提高了2.35%的条件下,使重油产率降低了0.32%,焦炭产率降低了0.22%,同时汽油收率和轻油收率分别提高了1.75%和1.68%,表现出很强的重质油转化能力和良好的裂化产物选择性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号