首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three‐dimensional (3D) printing technologies enables fast prototyping of complex 3D objects with ever improving printing qualities. To date, 3D printing has been found useful in areas such as manufacturing, industrial design, aerospace, dental and medical industries, and many others. In this article, we review recent advances of 3D printing technologies for terahertz (THz) applications. Different 3D printing technologies and printable materials are first discussed and compared. 3D‐printed THz components and devices, which are categorized as waveguides/fibers, antennas, and quasi‐optical components, are further demonstrated. It is found that the performances and functionalities of 3D‐printed THz devices have been greatly enhanced, while the operating frequencies have been increased from the lower end of THz range to over 1 THz region. With further development of novel materials and printing techniques, it is believed that 3D printing technologies will play an important role in the realization of THz components for efficient control and manipulation of THz waves.  相似文献   

2.
This article proposes and experimentally demonstrates an optically transparent and polarization‐insensitive metamaterial absorber in the terahertz (THz) frequencies. The absorber is formed by indium‐tin‐oxide (ITO) resistive films, providing efficient absorption with absorptivity of 94.1% at the peak absorption frequency of 120.8 GHz. We systematically investigate the surface current distribution and the power loss analysis, and explain the architecture of the absorber. Moreover, the absorber exhibits unique absorption properties at resonant frequencies, that is, featuring single‐band or dual‐band operation by changing the surface resistance of the ITO patterns. In addition, the experimental demonstration and measurement results are in good agreement with the simulated results. Most importantly, the fabricated absorber exhibits an optical transparency above 70% over the entire visible waveband, thereby enabling a wide range of applications such as optically transparent THz absorbers and detectors.  相似文献   

3.
A method for measuring the resonance frequency of contactless chip cards is proposed in this article. Compared to the vector network analyzer (VNA) based state‐of‐the‐art method, the method gives a more accurate definition of resonance frequency, removes the subjectivity associated with the state‐of‐the‐art method, and makes the measurement integrable into ISO‐standardized test setups. Signal processing and system modeling are applied in order to determine the maximum active power in the chip card over a chosen frequency range. This is achieved by using a transfer function obtained from the model and by setting a chirp signal as input to the system. The determined maximum of active power is mapped to the corresponding frequency in the chirp signal, which is defined as the resonance frequency. The proposed method is verified by simulations and by comparing measurement results with the state‐of‐the‐art. The results show that the proposed method offers significant advantages over the state‐of‐the‐art method.  相似文献   

4.
In this work, a step impedance resonator (SIR)‐based structure is proposed to develop a compact tunable metamaterial (MTM)‐based perfect absorber for solar cell applications. This MTM absorber is able to improve the absorption over a wide range of visible frequency range from 550 to 650 THz. The absorption is high around the frequency 600 THz. The proposed model is designed based on SIR technique to achieve miniaturization. The parametric study of overall size of the proposed MTM absorber analyzed over the frequency range 430‐750 THz. The thickness of dielectric spacer, and top most layer (MTM Structure) illustrates the tunable characteristics of the proposed model. A complete comparative analysis of proposed model with different dielectric spacers like AlGaAs, InAs, GaAs, and AlAs are presented with the help of absorption (S11) and transmission (S12). The proposed model is suitable for high efficiency solar cell energy harvesting applications.  相似文献   

5.
In this article, fractional‐order calculus is introduced to characterize Si‐BCB transmission line up to millimeter‐wave frequency region. Direct calculation method is employed to build this compact fractional‐order equivalent circuit model. Measured results have confirmed that the proposed fractional‐order model is capable of accurately describing the behavior of BCB‐Si T‐Line over a large range of frequencies up to 110 GHz.  相似文献   

6.
7.
In this article, the method of least mean squares (LMS) is employed to design ultra‐wideband (UWB) filters with various input and output port impedances in 6‐18 GHz frequency range. Optimization process on the circuit dimensions is done by MATLAB and AWR microwave office softwares utilizing exact closed‐form relations for microstrip transmission lines and microstrip T‐junction discontinuities. The advantages of this method are its simplicity, fast design time, including impedance matching. Two design examples are depicted in the article. To validate the designed structures, the circuit model results are compared with full‐wave analysis and measurements. The first design example corresponds to equal source and load impedances. For this design, maximum measured transmission coefficient in the frequency range 5.9‐16.6 GHz is obtained as ?12 dB, upper out‐of‐band rejection around image frequency is better than ?17 dB and lower out‐of‐band rejection at 5 GHz is obtained better than ?30 dB. The second design example describes the case of unequal source and load impedances.  相似文献   

8.
In this article, we present an electromagnetic study of electrically programmable graphene‐based metasurface with individual scattering control. Our investigation is based on the method of moments combined with the generalized equivalent circuit (MoM‐GEC) approach. We show that, tuning the unit cell's conductivity leads to change its input impedance and scattering matrix. So, each unit cell of the metasurface exhibits' a dynamic phase response that can be switched between 0° and ?180° by controlling high transmission and total reflection states. Based on this feature, a 1‐bit coding metasurface consisting of discrete codes of “0” and “1” is used to synthesis 3D beams. Hence, tailorable anomalous reflection and diffusion are studied under normal incidence at a fixed frequency of 3.9 THz. This survey opens new opportunities in the domain of Terahertz beam engineering and security scanner applications.  相似文献   

9.
Abstract In this study, double-layer S-shaped metamaterials (MMs) are analyzed by terahertz time-domain spectroscopy. These materials exhibit narrow bandstop and broad bandpass transmission properties at both horizontal and vertical electric-field polarizations. A 117% increase in the unloaded quality factor is experimen- tally observed for these materials. The center frequency is approximately 0.45 THz, with a 3-dB bandwidth of 0.52 THz from 0.20 to 0.72 THz at normal incidence. The measured average insertion loss is 0.5 dB with a ripple of 1 dB. These results show that double-layer S-shaped MMs are effective in designing tunable terahertz devices.  相似文献   

10.
This article presents a compact model to reduce the physical size and increase the frequency ratio between the second and first resonance frequencies of a dual‐function stepped‐impedance‐stub (SIS) line, which was subsequently employed in the realization of dual‐band branch‐line couplers. The proposed model comprises of a loaded spiral T‐shaped SIS that reduces the size of a conventional SIS line as well as improving its frequency ratio. The proposed model behaves exactly similar to the recently developed dual‐band resonators with the advantage of size reduction of ~35% as well as having a wide range of realizable frequency ratios between 1.4 and 3.7 compared to 1.7–2.7 and 1.8–2.3 for the conventional SIS and T‐shaped transmission‐lines, respectively. Dual‐narrowband and wideband branch‐line couplers were developed based on the spiral T‐shaped SIS lines. The dual‐wideband device's bandwidth was enhanced by 2.7% accompanied by a size reduction of 58.6% in comparison with the conventional dual‐wideband couplers operating at the same frequencies. The theoretical results were verified by measurement. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

11.
In this paper, a new computational method based on the Legendre wavelets (LWs) is proposed for solving a class of variable‐order fractional optimal control problems (V‐FOCPs). To do this, a new operational matrix of variable‐order fractional integration (OMV‐FI) in the Riemann‐Liouville sense for the LWs is derived and used to obtain an approximate solution for the problem under study. Along the way the hat functions (HFs) are introduced and employed to derive a general procedure to compute this matrix. In the proposed method, the variable‐order fractional dynamical system is transformed to an equivalent variable‐order fractional integro‐differential dynamical system, at first. Then, the highest integer order of the derivative of the state variable and the control variable are expanded by the LWs with unknown coefficients. Next, the OMV‐FI in the the Riemann‐Liouville sense together with some properties of the LWs are employed to achieve a nonlinear algebraic equation in place of the performance index and a nonlinear system of algebraic equations in place of the dynamical system in terms of the unknown coefficients. Finally, the method of constrained extremum is applied which consists of adjoining the constraint equations derived from the given dynamical system to the performance index by a set of undetermined Lagrange multipliers. As a result, the necessary conditions of optimality are derived as a system of algebraic equations in the unknown coefficients of the state variable, control variable and Lagrange multipliers. Furthermore, the efficiency and accuracy of the proposed method are demonstrated for some concrete examples. The obtained results show that the proposed method is very efficient and accurate.  相似文献   

12.
This paper investigates the input‐to‐state stability (ISS) issue for discrete‐time dynamical networks (DDNs) with time delays. Firstly, a general comparison principle for solutions of DDNs is proposed. Then, based on this general comparison principle, three kinds of ISS‐type comparison principles for DDNs are established, including the comparison principle for input‐to‐state ‐stability, ISS, and exponential ISS. The ISS‐type comparison principles are then used to investigate stability properties related to ISS for three kinds (linear, affine, and nonlinear) of DDNs. It shows that the ISS property of a DDN can be derived by comparing it with a linear or lower‐dimension DDN with known ISS property. By using methods such as variation of parameters, uniform M‐matrix, and the ISS‐type comparison principle, conditions of global exponential ISS for time‐varying linear DDNs with time delays are derived. Moreover, the obtained ISS results for DDNs are extended to the hybrid DDNs with time delays. As one application, the synchronization within an error bound in the sense of ISS is achieved for DDNs with coupling time delays and external disturbances. Finally, two examples are given to illustrate the results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A balanced dual‐band bandpass filter (BPF) with independently tunable differential‐mode (DM) frequencies is proposed in this letter. The proposed BPF is composed of complementary split‐ring resonators (CSRRs) etched on the ground and varactors loaded on the resonators. A balanced stepped‐impedance microstrip‐slotline transition structure is introduced to transfer the DM signals successfully and block the common‐mode (CM) signals transmission. Good DM transmission and CM suppression can be achieved. Moreover, by changing the reverse bias voltages of the varactors loaded on coupling CSRRs, two DM resonant frequencies of the proposed balanced BPF can be tuned independently. To verify the feasibility of the design method, a balanced BPF with DM frequency ranging from 0.80 GHz to 1.12 GHz and 1.55 GHz to 2.05 GHz is fabricated and measured. Good agreement between the simulation and measurement results demonstrate the validity of the design.  相似文献   

14.
针对现有无线网络媒体访问控制(MAC)协议难以在太赫兹(THz)载频条件下实现10Gbps级别超高速无线接入的问题,提出一种新的太赫兹超高速无线网络MAC协议——MAC-T。MAC-T设计了新的时分多路访问(TDMA)+载波侦听多路访问(CSMA)自适应混合MAC接入机制和一种新的超帧结构,并定义了对应于太赫兹通信的关键参数,从而使最大数据传输速率达到10Gbps以上。理论分析和仿真结果表明:MAC-T协议能够在太赫兹无线网络中正常运行,数据传输速率达到了18.3Gbps,是IEEE 802.15.3c标准定义的最大速率5.78Gbps的2.16倍,数据帧的平均接入时延约为0.0044s,性能相对于IEEE 802.15.3c标准提高了42.1%,从而在MAC协议方面为太赫兹超高速无线网络的研究和应用提供了有力支撑。  相似文献   

15.
Benefiting from the high conductivity and superb flexibility, graphene‐based materials are promising to replace metal for near‐field communication (NFC) applications. Herein, we report a flexible NFC tag antenna based on high‐conductivity graphene‐assembled films (HCGAFs) and investigate how the performance of the antenna is affected by antenna design and human body effect. The fabricated prototype via a one‐step laser‐direct mold engraving method shows a 10 dB bandwidth of 2.5 MHz centering at 13.70 MHz with a quality factor (Q) of 9.19. The maximum read range of the HCGAF NFC tag is measured to be around 7.5 cm, comparable to the commercially available metal NFC tags. Moreover, the flexible nature of HCGAFs guarantees excellent mechanical stability and deformation insensitivity, especially when compared to commercial metal‐based counterparts. We further demonstrate the practical applications of the HCGAF tag as key card and electronic business card in the vicinity of human body.  相似文献   

16.
This paper presents a new solution to a particular problem of high electron‐mobility transistor (HEMT) equivalent‐circuit modeling, that is, complete parasitic‐capacitance‐shell extraction of high‐frequency single‐gate and dual‐gate switch‐based HEMTs, which is very important to the accuracy of high‐frequency HEMT switch models, but not important in the conventional common‐source HEMT modeling for amplifier‐applications. A full‐wave electromagnetic (EM) analysis based method is proposed to analytically extract the complete parasitic‐capacitance‐shell of single‐gate and dual‐gate switch‐based HEMTs. All the 6 parasitic capacitances of the single‐gate switch‐based HEMT and all the 10 parasitic capacitances of the dual‐gate switch‐based HEMT are extracted by linear equations. No resistance parameter is needed to calculate the capacitance‐to‐ground and the interelectrode‐capacitance, and for the first time, all the 10 parasitic capacitances of the dual‐gate switch‐based HEMT are completely considered and analytically extracted. Then, a consistent and systematic modeling procedure of single‐gate and dual‐gate switch‐based HEMT is verified. With the complete parasitic‐capacitance‐shells extracted, the accurate intrinsic model of the single‐gate HEMT can be directly embedded into the parasitic‐shell of the dual‐gate HEMT. The predicted scattering parameters of the single‐gate and dual‐gate series switches fit well with the measurements up to 40 GHz, and accurate linear scalability are also found.  相似文献   

17.
In global navigation satellite system (GNSS) applications, the carrier‐smoothed code is a widely used technique to combine code pseudo‐range and carrier phase measurements. Unlike conventional methods, a method using dual‐frequency GNSS data to improve smoothing accuracy by eliminating ionosphere delay is described in this paper. In the recursive least‐squares theory for colored measurement errors framework, a global one‐step carrier‐smoothed code filter in range domain is proposed to overcome the limitations of traditional approaches. The correlations of the time‐differenced carrier phase measurements are considered. This approach avoids overly optimistically evaluating the estimate and improves the transient accuracy of the estimate. Compared with stepwise strategy, the one‐step method is superior and globally optimal. Experiments are conducted using real BDS data, and the performance of the proposed method is demonstrated.  相似文献   

18.
The fault‐tolerant control and vibration suppression for flexible spacecraft without angular velocity measurement are investigated. External disturbances, actuator faults, unknown angular velocity, and flexible vibration are addressed simultaneously. Firstly, a model‐free adaptive supertwisting state observer and an angular velocity calculation algorithm in one step are developed by using attitude information only, which can estimate the angular velocity in finite time. Then, on the basis of angular velocity estimation, a novel continuous multivariable integral sliding mode (CMISM) is proposed for the first time, which is a combination of continuous nominal controller and a modified multivariable twisting controller to reject disturbances and faults. The CMISM can stabilize attitudes in finite time and attenuate chattering effectively. Furthermore, the input shaping technique is developed to achieve effective vibration suppression of the flexible appendages. Finally, the efficiency of the proposed method is illustrated by numerical simulations.  相似文献   

19.
A hydrogenated amorphous silicon (a‐Si:H) thin‐film transistor (TFT) gate driver with multioutputs (eight outputs per stage) for high reliability, 10.7‐inch automotive display has been proposed. The driver circuit is composed of one SR controller, eight driving TFTs (one stage to eight outputs) with bridging TFTs. The SR controller, which starts up the driving TFTs, could also prevent the noise of gate line for nonworking period. The bridging TFT, using width decreasing which connects between the SR controller and the driving TFT, could produce the floating state which is beneficial to couple the gate voltage, improves the driving ability of output, and reaches consistent rising time in high temperature and low temperature environment. Moreover, 8‐phase clocks with 75% overlapping and dual‐side driving scheme are also used in the circuit design to ensure enough charging time and reduce the loading of each gate line. According to lifetime test results, the proposed gate driver of 720 stages pass the extreme temperature range test (90°C and ?40°C) for simulation, and operates stably over 800 hours at 90°C for measurement. Besides, this design is successfully demonstrated in a 10.7‐inch full HD (1080 × RGB×1920) TFT‐liquid‐crystal display (LCD) panel.  相似文献   

20.
An event‐triggered observer‐based output feedback control issue together with triggered input is investigated for a class of uncertain nonlinear systems subject to unknown external disturbances. Two separate event‐triggered conditions are located on the measurement channel and control channel, respectively. An event‐triggered extended state observer (ETESO) is employed to estimate unmeasurable states and compensate uncertainties and disturbances in real time while it is not required for real‐time output measurement. Then, combined with backstepping method and active disturbance rejection control, an output feedback control scheme is proposed, where an event‐triggered input is developed for reducing the communication rate between the controller and the actuator. The triggered instants are determined by a time‐varying event‐triggered condition. Two simulations, including a numerical example and an permanent‐magnet motor, are illustrated to verify the effectiveness of the proposed schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号