首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
A stepped‐impedance‐stub loaded stepped‐impedance resonator (SISLSIR) is proposed to design a dual‐band bandpass filter. The even‐ and odd‐mode frequencies and the coupling strength of the proposed resonators can be independently designed and adjusted. A dual‐feedline structure is used to meet the required external couplings of the 2 passbands. Thus, both the center frequencies and the bandwidths of the 2 passbands can be independently controlled. A 6‐pole dual‐band filter with the passbands of 3300~3600 MHz and 4800~5000 MHz is successfully designed using the proposed method and fabricated with YBCO/MgO high‐temperature superconducting (HTS) wafer. The measured results of the filter exhibit high performance and match well with the simulations. The measured insertion losses are less than 0.2/0.3 dB, and the return losses are greater than 15/14 dB for the lower/upper passbands, respectively. The out‐of‐band rejection is greater than 68 dB up to 12 GHz.  相似文献   

2.
    
In this article, a double‐T‐shaped stub centrally loaded uniform impedance resonator (UIR) is introduced and its resonant characteristics are well clarified, which provided a simple approach for triple‐mode wideband bandpass filter (BPF) design. The double‐T‐shaped stub consists of a T‐shaped stub at the center of UIR and two shunt uniform‐impedance stubs at the T‐shaped stub. Furthermore, loading technique for zero‐voltage point is employed to guide design procedure from UIR to the proposed resonator. The resonant frequencies of the first three modes for the resonator can be free to adjust by the length of the UIR and the two kinds of stub. Finally, a compact wideband BPF is designed, fabricated, and measured. The measured results are in good agreement with the full‐wave simulation results. The realized wideband filter exhibits a 3 dB fractional bandwidth of 69.1% with good in‐band filtering performance, wide stopband, and sharp out‐of‐band rejection skirt.  相似文献   

3.
    
A novel wideband microstrip bandpass filter (BPF) based on a coupled‐stub loaded resonator (CSLR) is presented in this article. The CSLR is constructed by attaching one short‐circuited parallel coupled microstrip line (PCML) in shunt to a high impedance microstrip line. The filter bandwidth can be conveniently controlled via reasonable adjusting of the impedance of PCML. Moreover, new defected microstrip structures (DMSs) introduced in the PCML functions as a means of adjusting the positions of transmission zeros, created by the PCML. The resonant mode and transmission zero chart are given, indicating that the higher modes could be suppressed by the transmission zeros. Finally, to validate the proposed method, two wideband BPF filters with and without DMSs centered at 3 GHz with 3 dB fractional bandwidth of 87% are designed and fabricated. The measured results show that both the return losses are better than 15.8 dB, while the BPF with DMSs has a ?19.4 dB isolation wideband from 1.57 to 4.23 . The measured results are in excellent agreement with full‐wave electromagnetic simulation results. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:122–128, 2015.  相似文献   

4.
    
In this article, a balanced microstrip dual‐band bandpass filter (BPF) is designed. The proposed filter is achieved by employing a microstrip U‐shape half‐wavelength resonator, a folded stub‐loaded resonator and balanced microstrip/slotline transition structures. The center frequencies and the fractional bandwidths of the two differential‐mode (DM) passbands can be controlled independently by changing the physical lengths of the two resonators and the gaps between each resonator, respectively. The balanced microstrip/slotline transition structures can achieve a wideband common‐mode (CM) suppression. Meanwhile, the DM passbands are independent from the CM responses, which significantly simplify the design procedure. In addition, a wide DM stopband is also realized. In order to validate the design strategies, a balanced dual‐band BPF centered at 2.57 and 3.41 GHz was fabricated and a good agreement between the simulated and measured results is observed.  相似文献   

5.
    
By etching slots in the low‐impedance section of the conventional stepped‐impedance resonator, a novel slotted stepped‐impedance resonator (SSIR) is proposed. As two examples, a fourth‐order bandpass filter (BPF) operating at 1 GHz with a size of 0.078 λg × 0.062 λg and a miniaturized diplexer operating at 0.9/1.57 GHz with a size of 0.054 λ0 × 0.086 λ0 are designed based on the proposed SSIR. The fabricated BPF exhibits a high selectivity and a wide ?30 dB rejection upper stopband from 1.13 f0 to 6.52 f0, while the fabricated diplexer has up to ?60 dB output isolation. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

6.
    
In this article, a quadruple‐mode stub‐loaded resonator (QM‐SLR) is introduced and its four modes are excited using a simple approach, which can provide a dual‐band behavior. By changing the length of the loaded stubs, independently tunable transmission characteristics of the proposed quadruple‐mode stub‐loaded resonator were extensively described for filter design. Moreover, microwave varactors were adopted to represent the length variation of the loaded stubs for the dual‐band tunability. The equivalent circuit modeling of the open stub with microwave varactor was given and discussed. Then, adopting the compact quadruple‐mode stub‐loaded resonator with three varactors, an independently controllable dual‐band bandpass filter (BPF) was designed, analyzed, and fabricated. Its separated bandwidths and transmission zeros can be tuned independently by changing the applying voltage of the microwave varactors. A good agreement between simulated and measured results verified the design methodology. The proposed filter possesses compact size, simple structure, and excellent dual‐band performances. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:602–608, 2016.  相似文献   

7.
    
A novel compact balun‐diplexer applying new interdigital line resonators (ILRs) is presented in this article. It is found that the proposed ILR can not only reduce circuit size and but also realize high common mode rejection in differential mode operation frequency. By properly converting the symmetric four‐port balanced bandpass filter (BPF) to a three‐port device, a balun BPF with high selectivity and compact size are accomplished using ILRs. Then, the balun‐diplexer can be realized by combining two well‐designed balun filters with two 50 Ω transmission lines. The demonstrated balun‐diplexer with operation at 1.8 and 2.45 GHz have been designed, fabricated, and measured. Excellent performances have been observed. Specifically, 0.4 dB in‐band amplitude error, 1.8 in‐band phase error, more than 50 dB selectivity and 45 dB isolation are obtained. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:485–489, 2015.  相似文献   

8.
    
In this article, a compact dual‐band bandpass filter (BPF) is developed using a hybrid resonant structure, which consists of a microstrip stub‐loaded dual‐mode resonator and a slotline stub‐loaded dual‐mode resonator. These two resonators, both having two controllable resonant modes and one transmission zero (TZ), are analyzed and used to construct two desired passbands of a dual‐band BPF. Multiple TZs are generated by introducing a source‐load coupling, thus improving the selectivity of the passbands. Then, the dual‐band BPF is reshaped to configure a compact diplexer. The inherent TZs of the two proposed resonators are designed to improve the frequency property and port isolation of the diplexer. Finally, a dual‐band BPF and a diplexer with the lower and upper passbands centered at 2.45 and 3.45 GHz, respectively, are designed, fabricated, and measured to verify the proposed structure and method.  相似文献   

9.
    
In this study, a novel stepped impedance resonator (SIR) is proposed. This SIR is composed of two stepped impedance transmission‐lines and an interdigital capacitor structure. The proposed resonator has a high ratio of the first spurious frequency fs to the fundamental frequency f0 and is suitable to design wide stopband filters. An equivalent model is used to analyze the resonant properties of the resonator. The design guidelines of the proposed resonator are summarized. Moreover, the coupling properties of the resonator are simulated and analyzed. Finally, a small high‐temperature superconducting bandpass filter is designed and fabricated using the proposed SIRs. The stopband of the filter is extended up to 4.0 f0 and 3.5 f0 with 30 and 60 dB out‐of‐band rejection levels, respectively.  相似文献   

10.
    
This paper presents a design method for moderate‐wideband filters with modified λ/2 stub resonators mid‐tapped by λ/4 connecting lines which act as admittance inverters. The modified tapped‐stubs avoid low characteristic impedances of the stubs which results in a very wide strip‐width and a large circuit size. An example filter at 2250 MHz with a fractional bandwidth (FBW) of 45% is successfully designed with this method and fabricated. It has a compact size of 26.5 mm × 10.5 mm on a YBCO/LaAlO3 superconducting wafer. The measurements show good response and match well with the simulations.  相似文献   

11.
    
The purpose of this article is to provide a comprehensive investigation on the resonance phenomenon of microstrip line coupled complementary split‐ring resonator (CSRR) with different orientation and relative size. It is shown that when the relative size of the CSRR is smaller than the host line, the CSRR with its slit oriented orthogonal to the line axis will not excite effectively and show weak resonance behavior. However, when the slit is positioned along the line axis, the cross‐polarization effect comes into play, which excites the CSRR through the mixed coupling. To ensure the correctness, several numerical simulations are carried out for different substrate height and relative permittivity. Finally, a prototype is fabricated and measured for the experimental validation.  相似文献   

12.
    
In this paper, a balanced dual‐band bandpass filter (BPF) with high selectivity and low insertion loss performance is presented by employing stub loaded resonators (SLRs) and stepped impedance resonators (SIRs) into balanced microstrip‐slotline (MS) transition structures. The balanced MS transition structures can achieve a wideband common‐mode (CM) suppression which is independent of the differential‐mode (DM) response, significantly simplifying the design procedure. Six varactors are loaded into the resonators to achieve the electrical reconfiguration. The proposed balanced dual‐band BPF can realize quasi‐independently tunable center frequencies and bandwidths. A tuning center frequency from 2.48 to 2.85 GHz and a fractional bandwidth (20.16%‐7.02%) with more than 15 dB return loss and less than 2.36 dB insertion loss are achieved in the first passband. The second passband can realize a tuning center frequency from 3.6 to 3.95 GHz with more than 12 dB return loss and less than 2.38 dB insertion loss. A good agreement between the simulated and measured results is observed.  相似文献   

13.
    
A novel planar ultrawideband monopole antenna with dual notched bands is presented. The antenna mainly consists of a radiation patch and a modified ground plane. To realize dual band‐notched characteristics, a U‐shaped stub embedded in the rectangular slot of the radiation patch and a novel coupled open‐/shorted‐circuit stub resonator are used on the backside of the substrate. The bandwidth of the dual notched bands can be controllable by adjusting some key parameters. The simulated and measured results indicate that the proposed antenna offers a very wide bandwidth from 2.6 to 18 GHz with Voltage Standing Wave Ratio (VSWR) < 2, except the dual notched bands of 3.3–3.7 GHz (World Interoperability for Microwave Access [WiMAX]) and 5.15–5.825 GHz (Wireless Local Area Network [WLAN]). Furthermore, good group delay and stable gains can be achieved over the operating frequencies. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:48–55, 2015.  相似文献   

14.
A microstrip open‐loop resonator oscillator operating at even modes is proposed. The even mode of the ring circuit can be predicted by using a simple transmission‐line model. The new oscillator has a characteristic similar to that of a push‐push oscillator. In addition, in comparison with the push‐push oscillator, the new oscillator with one active device can minimize the size and lower the cost. A voltage‐controlled piezoelectric transducer (PET) is used to vary the resonant frequencies of the ring resonator, which in turn tunes the oscillator with a good tuning range of 4.9% at around 12.1 GHz. This tuned oscillator should have many applications in wireless systems. © 2005 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2005.  相似文献   

15.
    
In this article, a tunable diplexer based on quarter‐wavelength resonators with mixed electromagnetic coupling is designed. Different coupling types are utilized to generate a transmission zero in the stopband of filter, aiming to improve the isolation of diplexer. The meander line tunable filter with a magnetic dominated coupling forms channel 1 of the diplexer, a transmission zero in upper stopband is realized. The tunable filter dominated by electrical coupling constitutes channel 2 of the diplexer, a transmission zero is produced in lower stopband of the filter. Varactor diodes are loaded at quarter‐wavelength resonators for tunability of the center frequency. The proposed diplexer is both demonstrated by simulation and measurement. Experimental results show that the designed tunable diplexer has a frequency range of 0.85‐1.2 GHz and an isolation of greater than 42 dB.  相似文献   

16.
    
In this study, we propose a stepped‐impedance‐stub loaded interdigital capacitor resonator for design of a dual‐band band‐pass filter with a large bandwidth ratio. The presented resonator has strong and weak couplings in the upper passbands (UPs) and lower passbands (LPs), respectively, so as to form a large upper/lower bandwidth ratio. Adopting a dual‐branch phase‐matched feedline structure can meet the external quality factors required for the UP/LP. Therefore, these two passbands, defined by their respective center frequencies and bandwidths, can be manipulated independently. A four‐pole dual‐band example filter with a lower bandwidth of 20 MHz at 1576 MHz and an upper bandwidth of 200 MHz at 2450 MHz is successfully designed on an YBCO/MgO superconducting wafer. The filter exhibits excellent frequency responses. The upper/LPs show insertion losses below 0.07/0.22 dB and return losses above 15.3/15.3 dB. The stopband rejection is better than 57 dB until the first spurious passband up to 6150 MHz (3.9fL).  相似文献   

17.
    
A frequency reconfigurable third‐order bandpass filter based on two substrate integrated waveguide (SIW) cavities is presented in this article. The purposed filter consists of a dual‐mode square‐shaped resonator and a triangular‐shaped resonator. In the square‐shaped cavity, four lumped capacitors are loaded as electrical tuning elements in the area where the electric fields of diagonal TE201 and TE102 modes are strongest. And an another capacitor is loaded at the suitable region of the triangular‐shaped cavity. Square‐shaped cavity introduces two transmission zeros and the triangular‐shaped cavity can suppress out‐of‐band spurious modes. The method that combines the resonators with different shapes and multiple modes into an organic whole cannot only achieve synchronous tuning but also have complementary advantages and improve out‐of‐band rejection. To verify its practicality, a SIW reconfigurable bandpass filter is simulated when the capacitance value varies from 0 to 1.4 pF and measured at 0.7, 0.8, and 0.9 pF, respectively. Measured results show that when the center frequency is tuned from 3.42 to 3.52 GHz, the proposed filter exhibits good tuning performance with insertion loss of less than 2.5 dB and return loss of better than 10 dB, which is suitable for fifth‐generation communication system.  相似文献   

18.
    
In this article, a compact dual‐band crossover using dual‐mode ring resonators by Coplanar‐Waveguide (CPW)‐Fed scheme is proposed. It contains 2 homocentric square ring resonators on the top layer to obtain the dual‐band responses. CPW feeding lines and open stubs are placed on the bottom layer to feed the ring resonators and adjust coupled strength. The center frequencies and bandwidths for each passband can be individually controlled easily. To prove the design concept, a compact dual‐band crossover operated at 1.57 and 2.45 GHz is designed and fabricated. The measured results show good agreement with the simulation ones results a wide frequency range.  相似文献   

19.
    
This article proposes a novel bandpass filter with two controllable passbands using a single quad‐mode silver‐loaded dielectric resonator (DR). The silver plane is inserted in the middle of the cubic DR and two degenerate pairs are used to build the two passbands. Because of the distinct E‐field distributions, the silver plane has significant effect on the degenerate pair (TEx112 and TEy112), whereas another one (TEx111 and TEy111) remains unchanged. With the aid of the silver plane, both center frequencies and bandwidths of the two bands can be controlled independently. To verify the proposed idea, a prototype dual‐band BPF is designed and fabricated. Good agreement between simulated and measured results can be observed.  相似文献   

20.
    
In this article, miniaturization of the wire monopole antenna with the help of high refractive index (HRI) metamaterial is presented. For the first time, HRI medium is realized by using the array of single ring split ring resonator. By surrounding the wire monopole with the array of SR‐SRRs, the effective wavelength is squeezed in the vicinity of the near field dominance. By the loading of the monopole with such an HRI medium, the size of the antenna is reduced from 29.5 to 16 mm, without any deformation in the current distribution and radiation pattern corresponding to the fundamental resonance. The simulated and measured results are agreed to the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号