首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The attitude tracking of a rigid body without angular velocity measurements is addressed. A continuous angular velocity observer with fractional power functions is proposed to estimate the angular velocity via quaternion attitude information. The fractional power gains can be properly tuned according to a homogeneous method such that the estimation error system is uniformly almost globally finite‐time stable, irrespective of control inputs. To achieve output feedback attitude tracking control, a quaternion‐based nonlinear proportional‐derivative controller using full‐state feedback is designed first, yielding uniformly almost globally finite‐time stable of the attitude tracking system as well as bounded control torques a priori. It is then shown that the certainty equivalent combination of the observer and nonlinear proportional‐derivative controller ensures finite‐time convergence of the attitude tracking error for almost all initial conditions. The proposed methods not only avoid high‐gain injection, as opposed to the semi‐global results, but also overcome the unwinding problem associated with some quaternion‐based observers and/or controllers. Numerical simulations are presented to verify the effectiveness of the proposed methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This article investigates the finite‐time output feedback stabilization problem for a class of nonlinear time‐varying delay systems in the p‐normal form. First, a reduced‐order state observer is designed to estimate the unmeasurable state. Then, an output feedback controller is constructed, with the help of the finite‐time Lyapunov stability theorem, it is proved that the state of the resulting closed‐loop system converges to the origin in finite time. Two simulation examples are given to verify the effectiveness of the proposed scheme.  相似文献   

3.
In this paper, a solution to the continuous output‐feedback finite‐time control problem is proposed for a class of second‐order MIMO nonlinear systems with disturbances. First, a continuous finite‐time controller is designed to stabilize system states at equilibrium points in finite time, which is proven correct by a constructive Lyapunov function. Next, because only the measured output is available for feedback, a continuous nonlinear observer is presented to reconstruct the total states in finite time and estimate the unknown disturbances. Then, a continuous output‐feedback finite‐time controller is proposed to track the desired trajectory accurately or alternatively converge to an arbitrarily small region in finite time. Finally, proposed methods are applied to robotic manipulators, and simulations are given to illustrate the applicability of the proposed control approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the definition of robust finite‐time H control is presented for a class of disturbed systems. Time‐varying norm‐bounded exogenous disturbance is considered in the system. A state feedback controller is designed, via a Linear Matrix Inequalities (LMIs) approach, which ensures that the closed‐loop system is finite‐time bounded (FTB) and reduces the effect of the disturbance input on the controlled output to a prescribed level. The main result, derived by Lyapunov functions, is a sufficient condition for FTB of disturbed systems and the sufficient condition can be reduced to a feasibility problem involving LMIs. Then a DC motor position control problem is simulated as a demonstration for this study. Simulation results are presented to show the effectiveness of the proposed method as a promising approach for controlling similar disturbed systems.  相似文献   

5.
This article investigates the event‐triggered finite‐time reliable control problem for a class of Markovian jump systems with time‐varying transition probabilities, time‐varying actuator faults, and time‐varying delays. First, a Luenberger observer is constructed to estimate the unmeasured system state. Second, by applying an event‐triggered strategy from observer to controller, the frequency of transmission is reduced. Third, based on linear matrix inequality technique and stochastic finite‐time analysis, event‐triggered observer‐based controllers are designed and sufficient conditions are given, which ensure the finite‐time boundedness of the closed‐loop system in an H sense. Finally, an example is utilized to show the effectiveness of the proposed controller design approach.  相似文献   

6.
The increasing penetration of power electronics in electrical equipment entails a significant impact on the deterioration of power supply quality. In this paper, the problem of power quality is addressed for distorted three‐phase four‐wire power grids supplying non‐linear unbalanced loads. A unified power quality conditioner (UPQC) is considered to ensure satisfactory electrical energy quality. To this end, a UPQC controller is designed to meet four control objectives: i) compensation of the harmonics and the reactive load currents; ii) compensation for the harmonic voltages at the point of common coupling (PCC); iii) cancelation of the neutral current; iv) and regulation of the inverter DC voltage. The control design relies on the UPQC nonlinear model that accounts for the electrical grid line impedance. Unlike previous works, the proposed controller features an output‐feedback nature as it combines a nonlinear regulator, designed with a sliding‐mode technique, and a state observer designed using a Lyapunov stability based technique. The latter provides the former with online estimates of the series filter AC voltages, which are not assumed to be accessible to measurements. The closed loop error system is analyzed using the average stability approach. It turns out that all (tracking and estimation) errors are asymptotically vanishing, except for the DC bus voltage tracking error, which is periodic in steady‐state with an amplitude depending on the (DC bus) capacitor, the larger the capacitor the smaller the steady‐state DC voltage tracking error level. This theoretical result is confirmed by simulations involving wide range variations of the load current.  相似文献   

7.
This article addresses the problem of global adaptive finite‐time control for a class of p‐normal nonlinear systems via an event‐triggered strategy. A state feedback controller is first designed for the nominal system by adding a power integrator method. Then, by the skillful design of adaptive dynamic gain mechanism, a novel event‐triggered controller is constructed for uncertain nonlinear system without homogeneous growth condition. It is proved that the global finite‐time stabilization of p‐normal nonlinear systems is guaranteed and the Zeno phenomenon is excluded. Finally, two examples are presented to indicate the effectiveness of the proposed control scheme.  相似文献   

8.
In this paper, a new observer‐based controller is proposed for a photovoltaic DC – DC buck converter; both photovoltaic (PV) voltage and current regulation are considered. In order to deal with the complex and nonlinear PV mathematical model and adapt it to the control purpose, a hybrid PV current observer model is proposed; three modes are defined and the stability of the observer is discussed using the hybrid dynamical system approach (HDS). The observer‐based controller is designed for both voltage and current regulation of the PV system; the closed loop of the full system stability is demonstrated through Lyapunov analysis. Experimental results are also presented showing the feasibility of the proposed observer‐based controller.  相似文献   

9.
A sliding mode feedback controller, based on integral reconstructors is developed for the regulation of the ‘boost’ DC‐to‐DC power converter circuit conduction in continuous conduction mode. The feedback control scheme uses only output capacitor voltage measurements, as well as knowledge of the available input signal, represented by the switch positions. The robustness of the feedback scheme is tested with abusively large, unmodelled, sudden load resistance variations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The output tracking controller design problem is dealt with for a class of nonlinear semi‐strict feedback systems in the presence of mismatched nonlinear uncertainties, external disturbances, and uncertain nonlinear virtual control coefficients of the subsystems. The controller is designed in a backstepping manner, and to avoid the shortcoming of ‘explosion of terms’, the dynamic surface control technique that employs a group of first‐order low‐pass filters is adopted. At each step of the virtual controller design, a robust feedback controller employing some effective nonlinear damping terms is designed to guarantee input‐to‐state practical stable property of the corresponding subsystem, so that the system states remain in the feasible domain. The virtual controller is enhanced by a finite‐time disturbance observer that estimates the disturbance term in a finite‐time. The properties of the composite control system are analyzed theoretically. Furthermore, by exploiting the cascaded structure of the control system, a simplified robust controller is proposed where only the first subsystem employs a disturbance observer. The performance of the proposed methods is confirmed by numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, we address the problem of output stabilization for a class of nonlinear time‐delay systems. First, an observer is designed for estimating the state of nonlinear time‐delay systems by means of quasi‐one‐sided Lipschitz condition, which is less conservative than the one‐sided Lipschitz condition. Then, a state feedback controller is designed to stabilize the nonlinear systems in terms of weak quasi‐one‐sided Lipschitz condition. Furthermore, it is shown that the separation principle holds for stabilization of the systems based on the observer‐based controller. Under the quasi‐one‐sided Lipschitz condition, state observer and feedback controller can be designed separately even though the parameter (A,C) of nonlinear time‐delay systems is not detectable and parameter (A,B) is not stabilizable. Finally, a numerical example is provided to verify the efficiency of the main results.  相似文献   

12.
A constrained output feedback model predictive control (MPC) scheme for uncertain Norm‐Bounded discrete‐time linear systems is presented. This scheme extends recent results achieved by the authors under full‐state availability to the more interesting case of incomplete and noisy state information. The design procedure consists of an off‐line step where a state feedback and an asymptotic observer (dynamic primal controller) are designed via bilinear matrix inequalities and used to robustly stabilize a suitably augmented state plant. The on‐line moving horizon procedure adds N free control moves to the action of the primal controller which are computed by solving a linear matrix inequality optimization problem whose numerical complexity grows up only linearly with the control horizon N. The effectiveness of the proposed MPC strategy is illustrated by a numerical example. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper considers the problem of almost disturbance decoupling (ADD) via sampled‐data output feedback control for a class of uncertain nonlinear systems subject to time‐delays. Based on output feedback domination approach, a sampled‐data output feedback controller is designed to globally stabilize the system under a lower‐triangular linear growth condition. Gronwall‐Bellman‐like inequality and inductive method are introduced to estimate the state growth in the presence of time‐delays, uncertain nonlinearities and unknown disturbances. The proposed controller can attenuate the influence of disturbances on the output to an arbitrary degree in the L2 gain sense. Finally, simulation results show the effectiveness of the control method.  相似文献   

14.
This paper studies the problem of using a sampled‐data output feedback controller to globally stabilize a class of nonlinear systems with uncertain measurement and control gains. A reduced‐order observer and a linear output control law, both in the sampled‐data form, are designed without the precise knowledge of the measurement and control gains except for their bounds. The observer gains are chosen recursively in a delicate manner by utilizing the output feedback domination approach. The allowable sampling period is determined by estimating and restraining the growth of the system states under a zero‐order‐hold input with the help of the Gronwall–Bellman Inequality. A DC–DC buck power converter as a real‐life example will be shown by numerical simulations to demonstrate the effectiveness of the proposed control method.  相似文献   

15.
The finite‐time formation control for multiple nonholonomic wheeled mobile robots with a leader‐following structure is studied. Different from the existing results, the considered mobile robot has the following features: (i) a higher‐order dynamic model, (ii) the robot's velocities cannot be measured, and (iii) there are external disturbances. To solve the problem, a finite‐time consensus formation control algorithm via output feedback is explicitly given. At the first step, some finite‐time convergent observers are skillfully constructed to estimate both the unknown velocity information and the disturbance in finite time by imposing certain assumptions on the disturbances. Then, on the basis of the integral sliding‐mode control method, a disturbance observer‐based finite‐time output feedback controller is developed. Rigorous proof shows that the finite‐time formation can be achieved in finite time. An example is finally given to verify the efficiency of the proposed method.  相似文献   

16.
This paper investigates the global practical tracking via adaptive output‐feedback for a class of uncertain nonlinear systems. Essentially different from the closely related literature, the system under investigation possesses unknown time‐varying control coefficients and a polynomial‐of‐output growth rate, and meanwhile, the system nonlinearities and the reference signal allow serious unknowns. For this, an adaptive observer is designed to reconstruct the system unmeasured states, where a new dynamic gain is introduced to compensate the serious unknowns in the system nonlinearities and the reference signal. Based on this and by backstepping technique, an adaptive output‐feedback controller is successfully designed, such that all the states of the closed‐loop system are bounded, and the tracking error will be prescribed sufficiently small after a finite time. A numerical simulation is provided to demonstrate the effectiveness of the proposed method.  相似文献   

17.
In this paper, globally asymptotical stabilization problem for a class of planar switched nonlinear systems with an output constraint via smooth output feedback is investigated. To prevent output constraint violation, a common tangent‐type barrier Lyapunov function (tan‐BLF) is developed. Adding a power integrator approach (APIA) is revamped to systematically design state‐feedback stabilizing control laws incorporating the common tan‐BLF. Then, based on the designed state‐feedback controllers and a constructed common nonlinear observer, smooth output‐feedback controllers, which can make the system output meet the predefined constraint during operation, are proposed to deal with the globally asymptotical stabilization problem of planar switched nonlinear systems under arbitrary switchings. A numerical example is employed to verify the proposed method.  相似文献   

18.
This paper addresses the output feedback tracking control of a class of multiple‐input and multiple‐output nonlinear systems subject to time‐varying input delay and additive bounded disturbances. Based on the backstepping design approach, an output feedback robust controller is proposed by integrating an extended state observer and a novel robust controller, which uses a desired trajectory‐based feedforward term to achieve an improved model compensation and a robust delay compensation feedback term based on the finite integral of the past control values to compensate for the time‐varying input delay. The extended state observer can simultaneously estimate the unmeasurable system states and the additive disturbances only with the output measurement and delayed control input. The proposed controller theoretically guarantees prescribed transient performance and steady‐state tracking accuracy in spite of the presence of time‐varying input delay and additive bounded disturbances based on Lyapunov stability analysis by using a Lyapunov‐Krasovskii functional. A specific study on a 2‐link robot manipulator is performed; based on the system model and the proposed design procedure, a suitable controller is developed, and comparative simulation results are obtained to demonstrate the effectiveness of the developed control scheme.  相似文献   

19.
This paper investigates the stabilization problem of sampled‐data output feedback for a class of uncertain switched nonlinear systems in nonstrict‐feedback form. An observer is designed to estimate the unmeasured states, and a sampled‐data controller is obtained by discretizing the virtual controller that is constructed via the dynamic surface control method. It is proved that the designed sampled‐data controller can render all states of the resulting closed‐loop system to converge to a neighborhood of the origin for the arbitrary switching signal, and an allowable sampling period is also given. Finally, 2 examples are presented to illustrate the effectiveness of the proposed method.  相似文献   

20.
In this paper, output‐feedback control strategies are proposed for lower‐triangular nonlinear nonholonomic systems in any prescribed finite time. Specifically, by employing the input‐state–scaling technique, the controlled systems are firstly converted into lower‐triangular nonlinear systems, which makes it possible to study such systems using the high‐gain technique. Then, by introducing a scaling of the state by a function that grows unbounded toward the terminal time and proposing a high‐gain observer–prescribed finite time recovering the system states, the output‐feedback regulation control problem in any prescribed finite time is firstly achieved for nonlinear nonholonomic systems with unknown constant incremental rate. Moreover, by designing another time‐varying high gain, the output‐feedback stabilization control problem in any prescribed finite time is then achieved for nonlinear nonholonomic systems with a time‐varying incremental rate. Finally, a numerical example is introduced to show the effectiveness of proposed control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号