首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The problem of robust adaptive predictive control for a class of discrete-time nonlinear systems is considered. First, a parameter estimation technique, based on an uncertainty set estimation, is formulated. This technique is able to provide robust performance for nonlinear systems subject to exogenous variables. Second, an adaptive MPC is developed to use the uncertainty estimation in a framework of min–max robust control. A Lipschitz-based approach, which provides a conservative approximation for the min–max problem, is used to solve the control problem, retaining the computational complexity of nominal MPC formulations and the robustness of the min–max approach. Finally, the set-based estimation algorithm and the robust predictive controller are successfully applied in two case studies. The first one is the control of anonisothermal CSTR governed by the van de Vusse reaction. Concentration and temperature regulation is considered with the simultaneous estimation of the frequency (or pre-exponential) factors of the Arrhenius equation. In the second example, a biomedical model for chemotherapy control is simulated using control actions provided by the proposed algorithm. The methods for estimation and control were tested using different disturbances scenarios.  相似文献   

2.
《Automatica》2014,50(12):3100-3111
In this paper, we thoroughly investigate various aspects of economic model predictive control with average constraints, i.e., constraints on average values of state and input variables. In particular, we first show that a certain time-varying output constraint has to be included into the MPC problem formulation in order to ensure fulfillment of these average constraints. Optimizing a general (possibly economic) performance criterion may result in a non-converging behavior of the corresponding closed-loop system. While such a behavior might be acceptable in some cases, it may be undesirable for other types of applications. Hence as a second contribution, we provide a Lyapunov-like analysis to conclude that indeed asymptotic convergence to the optimal steady-state follows if the system satisfies a certain dissipativity condition. Finally, for the case that this dissipativity property is not satisfied but still a convergent behavior of the closed-loop is required, we examine two different methods how convergence can be enforced within an economic MPC setup by imposing additional average constraints on the system. In the first method, an additional average constraint is defined which results in the system being dissipative, while the second consists of imposing an additional even zero-moment average constraint. We illustrate our results with various examples.  相似文献   

3.
    
The high-speed electric multiple unit (EMU) is a complex, uncertain and nonlinear dynamic system. The traditional approach to operating the high-speed EMU is based upon manual operation. To improve the performance of high-speed EMU, this paper develops a control dynamic model to capture the motion of the high-speed EMU and then uses it to design a desirable speed tracking controller for EMU. We exploit a data-driven adaptive neurofuzzy inference system (ANFIS) to model the running process. Based on the ANFIS model, we propose a generalized predictive control algorithm to ensure the high-precision speed tracking of the high-speed EMU. The simulation results on the actual CRH380AL (China railway high-speed EMU type-380AL) operation data show that the proposed approach could ensure the safe, punctual, comfortable and efficient operation of high-speed EMU.  相似文献   

4.
    
The performance of modern control methods, such as model predictive control, depends significantly on the accuracy of the system model. In practice, however, stochastic uncertainties are commonly present, resulting from inaccuracies in the modeling or external disturbances, which can have a negative impact on the control performance. This article reviews the literature on methods for predicting probabilistic uncertainties for nonlinear systems. Since a precise prediction of probability density functions comes along with a high computational effort in the nonlinear case, the focus of this article is on approximating methods, which are of particular relevance in control engineering practice. The methods are classified with respect to their approximation type and with respect to the assumptions about the input and output distribution. Furthermore, the application of these prediction methods to stochastic model predictive control is discussed including a literature review for nonlinear systems. Finally, the most important probabilistic prediction methods are evaluated numerically. For this purpose, the estimation accuracies of the methods are investigated first and the performance of a stochastic model predictive controller with different prediction methods is examined subsequently using multiple nonlinear systems, including the dynamics of an autonomous vehicle.  相似文献   

5.
    
The problem of active fault‐tolerant tracking control with control input and system output constraints is studied for a class of discrete‐time systems subject to sensor faults. A time‐varying fault‐tolerant observer is first developed to estimate the real system state from the faulty sensor output and control input signals. Then by using the estimated state at each time step, a model predictive control (MPC)‐based fault‐tolerant tracking control scheme is presented to guarantee the desired tracking performance and the given input and output constraints on the faulty system. In comparison with many existing fault‐tolerant MPC methods, its main contribution is that the proposed state estimator is designed by the simple and online numerical computation to tolerate the possible sensor faults, so that the regular MPC algorithm without fault information can be adopted for the online calculation of fault‐tolerant control signal. The potential recursive infeasibility and computational complexity due to the faults are avoided in the scheme. Additionally, the closed‐loop stability of the post‐fault system is discussed. Simulative results of an electric throttle control system verify the effectiveness of the proposed method.  相似文献   

6.
In this paper, a novel model predictive control (MPC) for constrained (non-square) linear systems to track piecewise constant references is presented. This controller ensures constraint satisfaction and asymptotic evolution of the system to any target which is an admissible steady-state. Therefore, any sequence of piecewise admissible setpoints can be tracked without error. If the target steady state is not admissible, the controller steers the system to the closest admissible steady state.These objectives are achieved by: (i) adding an artificial steady state and input as decision variables, (ii) using a modified cost function to penalize the distance from the artificial to the target steady state (iii) considering an extended terminal constraint based on the notion of invariant set for tracking. The control law is derived from the solution of a single quadratic programming problem which is feasible for any target. Furthermore, the proposed controller provides a larger domain of attraction (for a given control horizon) than the standard MPC and can be explicitly computed by means of multiparametric programming tools. On the other hand, the extra degrees of freedom added to the MPC may cause a loss of optimality that can be arbitrarily reduced by an appropriate weighting of the offset cost term.  相似文献   

7.
  总被引:4,自引:0,他引:4  
This paper presents a nonlinear model predictive control scheme for stabilizing the well pressure during oil well drilling. While drilling, a fluid is pumped through the drill string and the drill bit, and is returning through the annulus between the drilled well and the drill string. Varying reservoir conditions and fluctuation in circulation flow rates cause sudden variations in the pressure conditions along the well. To compensate for these pressure fluctuations, the annulus choke valve opening can be adjusted. The proposed control scheme is based on a first-principles two-phase flow model using spatial discretization of the complete well. The optimal future choke settings are found using the Levenberg–Marquardt optimization algorithm. This control scheme is evaluated against two other control methods, a manual control scheme and a standard feed-back PI-control scheme of the choke valve with feed-forward control of the pump rates. The PI-control parameters are found using the Ziegler–Nichols closed-loop method based on simulations from a low-order model. The results show that both the PI-control scheme and the model predictive control scheme are superior to manual control. However, the PI-control scheme requires that the control parameters are re-designed when the operating conditions are deviating from the original design conditions. The model predictive control scheme will perform within the operating limits as long as the detailed model is able to describe the actual conditions of the well.  相似文献   

8.
Direct adaptive fuzzy control of nonlinear strict-feedback systems   总被引:8,自引:0,他引:8  
This paper focuses on adaptive fuzzy tracking control for a class of uncertain single-input /single-output nonlinear strict-feedback systems. Fuzzy logic systems are directly used to approximate unknown and desired control signals and a novel direct adaptive fuzzy tracking controller is constructed via backstepping. The proposed adaptive fuzzy controller guarantees that the output of the closed-loop system converges to a small neighborhood of the reference signal and all the signals in the closed-loop system remain bounded. A main advantage of the proposed controller is that it contains only one adaptive parameter that needs to be updated online. Finally, an example is used to show the effectiveness of the proposed approach.  相似文献   

9.
10.
    
This paper briefly reviews development of nonlinear model predictive control (NMPC) schemes for finite horizon prediction and basic computational algorithms that can solve the stable real‐time implementation of NMPC in space state form with state and input constraints. In order to ensure stability within a finite prediction horizon, most NMPC schemes use a terminal region constraint at the end of the prediction horizon — a particular NMPC scheme using a terminal region constraint, namely quasi‐infinite horizon, that guarantees asymptotic closed‐loop stability with input constraints is presented. However, when nonlinear processes have both input and state constraints, difficulty arises from failure to satisfy the state constraints due to constraints on input. Therefore, a new NMPC scheme without a terminal region constraint is developed using soften state constraints. A brief comparative simulation study of two NMPC schemes: quasi‐infinite horizon and soften state constraints is done via simple nonlinear examples to demonstrate the ability of the soften state constraints scheme. Finally, some features of future research from this study are discussed.  相似文献   

11.
A multivariable MRAC scheme with application to a nonlinear aircraft model   总被引:1,自引:0,他引:1  
This paper revisits the multivariable model reference adaptive control (MRAC) problem, by studying adaptive state feedback control for output tracking of multi-input multi-output (MIMO) systems. With such a control scheme, the plant-model matching conditions are much less restrictive than those for state tracking, while the controller has a simpler structure than that of an output feedback design. Such a control scheme is useful when the plant-model matching conditions for state tracking cannot be satisfied. A stable adaptive control scheme is developed based on LDS decomposition of the high-frequency gain matrix, which ensures closed-loop stability and asymptotic output tracking. A simulation study of a linearized lateral-directional dynamics model of a realistic nonlinear aircraft system model is conducted to demonstrate the scheme. This linear design based MRAC scheme is subsequently applied to a nonlinear aircraft system, and the results indicate that this linearization-based adaptive scheme can provide acceptable system performance for the nonlinear systems in a neighborhood of an operating point.  相似文献   

12.
    
This article deals with the model predictive control (MPC) of linear, time‐invariant discrete‐time polytopic (LTIDP) systems. The 2‐fold aim is to simplify the treatment of complex issues like stability and feasibility analysis of MPC in the presence of parametric uncertainty as well as to reduce the complexity of the relative optimization procedure. The new approach is based on a two degrees of freedom (2DOF) control scheme, where the output r(k) of the feedforward input estimator (IE) is used as input forcing the closed‐loop system ∑f. ∑f is the feedback connection of an LTIDP plant ∑p with an LTI feedback controller ∑g. Both cases of plants with measurable and unmeasurable state are considered. The task of ∑g is to guarantee the quadratic stability of ∑f, as well as the fulfillment of hard constraints on some physical variables for any input r(k) satisfying an “a priori” determined admissibility condition. The input r(k) is computed by the feedforward IE through the on‐line minimization of a worst‐case finite‐horizon quadratic cost functional and is applied to ∑f according to the usual receding horizon strategy. The on‐line constrained optimization problem is here simplified, reducing the number of the involved constraints and decision variables. This is obtained modeling r(k) as a B‐spline function, which is known to admit a parsimonious parametric representation. This allows us to reformulate the minimization of the worst‐case cost functional as a box‐constrained robust least squares estimation problem, which can be efficiently solved using second‐order cone programming.  相似文献   

13.
    
The cooling zone of an induration furnace exhibits a nonlinear dynamic behavior in addition to a strong coupling between output pressure and temperature. Simulation studies show that linear controller performance is unacceptable from an industrial point of view. In order to obtain adequate performance on a wide operating range, a nonlinear predictive controller (NLMPC) based on a phenomenological process model is proposed. Since the furnace simulation model shows that the equipment behaves as a Hammerstein model, a variable change is performed and a linear model predictive controller (MPC) is developed for the cooling zone. Both controllers are tested for set-point changes and disturbance rejection and give relatively similar performances. It is concluded that for processes having structured nonlinearities, as the cooling zone considered here, linear MPC should be preferred to NLMPC since the computation time is far less demanding and the industrial implementation easier.  相似文献   

14.
Generalized terminal state constraint for model predictive control   总被引:1,自引:0,他引:1  
A terminal state equality constraint for Model Predictive Control (MPC) laws is investigated, where the terminal state/input pair is not fixed a priori but it is a free variable in the optimization. The approach, named “generalized” terminal state constraint, can be used for both tracking MPC (i.e. when the objective is to track a given steady state) and economic MPC (i.e. when the objective is to minimize a cost function which does not necessarily attains its minimum at a steady state). It is shown that the proposed technique provides, in general, a larger feasibility set with respect to the existing approaches, given the same prediction horizon. Moreover, a new receding horizon strategy is introduced, exploiting the generalized terminal state constraint. Under mild assumptions, the new strategy is guaranteed to converge in finite time, with arbitrarily good accuracy, to an MPC law with an optimally-chosen terminal state constraint, while still enjoying a larger feasibility set. The features of the new technique are illustrated by an inverted pendulum example in both the tracking and the economic contexts.  相似文献   

15.
In this work, a local constrained adaptive output feedback is presented for a class of exothermic tubular reactors models described by a nonlinear partial differential equations. The considered output is the measured temperature in a fixed zone of the reactor to regulate the temperature throughout the reactor to a ball with radius λ (arbitrarily small) centered at the fixed temperature profile. For a given measurement zone with length given in terms of the desired profile and λ and for initial temperature in a fixed domain, it is shown that the tracking error through the reactor tends asymptotically to a ball of arbitrary prescribed radius λ > 0, centered at the given temperature profile. Numerical simulations have been performed to illustrate the performance of the proposed approach.  相似文献   

16.
低速行驶重型车辆的动力学系统建模与非线性控制   总被引:2,自引:0,他引:2       下载免费PDF全文
考虑低速行驶工况下的重型车辆,本文建立其纵向行驶驱/制动系统的非线性动力学方程. 在此基础上采用反馈线性化方法将驱/制动工况下的非线性系统转化为线性可控正则型,并针对制动工况下非线性系统存在的控制时滞,提出一种基于非线性SMITH 预估方法的反馈线性化变换,该变换在有效补偿控制时滞同时,实现了制动系统的线性可控正则型转换. 最后,分别基于驱/制动系统的线性可控正则型设计跟踪控制器,实现了车辆低速工况的加/减速度精确跟踪控制.  相似文献   

17.
    
This paper presents modeling and control of nonlinear hybrid systems using multiple linearized models. Each linearized model is a local representation of all locations of the hybrid system. These models are then combined using Bayes theorem to describe the nonlinear hybrid system. The multiple models, which consist of continuous as well as discrete variables, are used for synthesis of a model predictive control (MPC) law. The discrete-time equivalent of the model predicts the hybrid system behavior over the prediction horizon. The MPC formulation takes on a similar form as that used for control of a continuous variable system. Although implementation of the control law requires solution of an online mixed integer nonlinear program, the optimization problem has a fixed structure with certain computational advantages. We demonstrate performance and computational efficiency of the modeling and control scheme using simulations on a benchmark three-spherical tank system and a hydraulic process plant.  相似文献   

18.
针对带一类非线性参数系统的状态反馈自适应跟踪控制问题,通过设计一种新的李亚普诺夫函数--加权控制李亚普诺夫函数,由它作用于控制器和参数调整律,使之达到全局渐近跟踪从而满足控制指标。  相似文献   

19.
In this paper, adaptive tracking control is proposed for a class of uncertain multi-input and multi-output nonlinear systems with non-symmetric input constraints. The auxiliary design system is introduced to analyze the effect of input constraints, and its states are used to adaptive tracking control design. The spectral radius of the control coefficient matrix is used to relax the nonsingular assumption of the control coefficient matrix. Subsequently, the constrained adaptive control is presented, where command filters are adopted to implement the emulate of actuator physical constraints on the control law and virtual control laws and avoid the tedious analytic computations of time derivatives of virtual control laws in the backstepping procedure. Under the proposed control techniques, the closed-loop semi-global uniformly ultimate bounded stability is achieved via Lyapunov synthesis. Finally, simulation studies are presented to illustrate the effectiveness of the proposed adaptive tracking control.  相似文献   

20.
针对一类含有未知控制方向和时变不确定性的本质非线性系统,应用Nussbaum-type增益技术和Adding a power integrator递推设计方法,设计了一种鲁棒自适应状态反馈拉制器.所设计的控制器能保证闭环系统所有信号全局一致有界,特别是通过适当调整控制器设计参数,可使输出跟踪误差在有限时间后变得适当小.最后通过仿真实例对算法进行验证.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号