首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermodynamic analysis of the CO2 hydrogenation to methanol where competitive reactions take place is presented for a membrane reactor (MR) where methanol was selectively removed. A non-isothermal mathematical model was written to simulate a micro-porous MR. Zeolite membranes with different values of the CH3OH and H2O permeances were considered in the MR modelling. The effect of temperature, pressure and species permeation on the conversion, selectivity and yield was analysed. A higher CO2 conversion and CH3OH selectivity can be reached by the use of an MR. An increased CH3OH yield allows to reduce the consumption of reactant and also to operate at lower pressures and higher temperatures, a fact, which favours the kinetics reducing the residence time and the reactor volume. The MR with the highest CH3OH/H2O permeance ratio resulted in better selectivity and yield of CH3OH with respect to the other MR characterised by a higher conversion.  相似文献   

2.
Methoxy formed on Al2O3 from13CO and H2 coadsorption on Ni/Al2O3 was trapped by C2H5OH adsorption and temperature-programmed reaction (TPR). The presence of excess C2H5OH significantly increases the rate of13CH3OH and (13CH3)2O formation. The13CH3OH forms by the reaction of C2H5OH with13CH3O on Al2O3. In the absence of C2H5OH,TPR following13CO and H2 coadsorption did not produce significant amounts of13CH3OHor(13CH3)2O.  相似文献   

3.
The linear gradient theory (LGT) of fluid interfaces in combination with the cubic-plus-association equation of state (CPA EOS) is applied to determine the interfacial tensions of (CH4+N2)+H2O and (N2+CO2)+H2O ternary mixtures from 298–373 K and 10–300 bar. First, the pure component influence parameters of CH4, N2, CO2 and H2O are obtained. Then, temperature-dependent expressions of binary interaction coefficient for (CH4+H2O), (N2+H2O) and (CO2+H2O) are correlated. These empirical correlations of pure component influence parameters and binary interaction coefficients are applied for ternary mixtures. For (CH4+N2)+H2O and (N2+CO2)+H2O mixtures, the predictions show good agreement with experimental data (overall AAD~1.31%).  相似文献   

4.
The effects of reaction gases including CO2 and H2O and temperature on the selective low-temperature oxidation of CO were studied in hydrogen rich streams using a flow micro-reactor packed with a Pt–SnO2/Al2O3 sol–gel catalyst that was initially designed and optimized for operation in the absence of CO2 and H2O. 100% CO conversion was achieved over the 1 wt% Pt–3 wt% SnO2/Al2O3 catalyst at 110 °C using a feed composition of 1.0% CO, 1.5% O2, 25% CO2, 10% H2O, 58% H2 and He as balance at a space velocity of 24,000 cm3/(g h). CO2 in the feed was found to decrease CO conversion significantly while the presence of H2O in the feed increased CO conversion, balancing the effect of CO2.  相似文献   

5.
Herein, we explore how OH groups on Pt/γ-AlOOH and Pt/γ-Al2O3 catalysts affect CO2 hydrogenation with H2 at temperatures from 250°C to 400°C. OH groups are abundant on γ-AlOOH, but rare at Pt-(γ-AlOOH) interface which is the most favorable site for CO2 conversion on Pt/γ-AlOOH. This makes CO2 hydrogenation on Pt/γ-AlOOH form CO weakly bonding to γ-AlOOH, which prefers to desorption from Pt/γ-AlOOH rather than further conversion, thus enhancing CO production on Pt/γ-AlOOH. Different from Pt/γ-AlOOH, OH groups are abundant at Pt-(γ-Al2O3) interface which is the most favorable site for CO2 conversion on Pt/γ-Al2O3. This promotes CO2 hydrogenation on Pt/γ-Al2O3 to form CO strongly bonding to Pt, which prefers to further hydrogenation to CH4, and thereby increases CH4 selectivity on Pt/γ-Al2O3. Therefore, the OH groups at metal-support interface are crucial factor influencing product distribution, and must be considered seriously when fabricating catalysts.  相似文献   

6.
The partial oxidation of CH3OH to CO2 and H2 over a Cu/ZnO/Al2O3 catalyst has been studied by temperature-programmed oxidation (TPO) using N2O and O2 as the oxidant. Post-reaction analysis of the adsorbate composition of the surface of the catalyst was determined by temperature-programmed desorption (TPD). The temperature dependence of the composition of the mixture of products formed by TPO was shown to depend critically on the partial pressure of the oxidant, with the highest partial pressure of oxygen used (10% O2 in He, 101 kPa—the CH3OH partial pressure was 17% throughout), producing marked non-Arrhenius fluctuations on temperature programming. Unsurprisingly, therefore, the adsorbate composition of the catalyst revealed by post-reaction TPD was also found to be determined by the partial pressure of the oxidant. Using high partial pressures of oxidant (5% and 10% O2 in He, 101 kPa), the only adsorbate detected was the bidentate formate species adsorbed on Cu. Lowering the oxygen partial pressure to 2% in He (101 kPa) revealed a catalyst surface on which the bidentate formate on Cu was the dominant intermediate with the formate on Al2O3 also being present. A further lowering of the partial pressure of the oxidant, obtained by using N2O as the oxidant (2% N2O in He, 101 kPa), resulted in a surface on which the formate adsorbed on ZnO was the dominant adsorbate with only a small coverage of the Cu by the bidentate formate.  相似文献   

7.
《分离科学与技术》2012,47(5):1045-1073
Abstract

The design of a layered pressure swing adsorption unit to treat a specified off-gas stream is based on the properties of the adsorbent materials. In this work we provide adsorption equilibrium and kinetics of the pure gases in a SMR off-gas: H2O, CO2, CH4, CO, N2, and H2 on two different adsorbents: activated carbon and zeolite. Data were measured gravimetrically at 303–343 K and 0–7 bar. Water adsorption was only measured in the activated carbon at 303 K and kinetics was evaluated by measuring a breakthrough curve with high relative humidity.  相似文献   

8.
The direct reaction of europium metal with HO(CH2CH2O)2CH2CH3 followed by treatment with 2,6-iPr2C6H3OH leads to the crystallographically-characterizable, mixed valent carbitoxide product Eu3[O(CH2CH2O)2CH2CH3]4(OC6H3iPr2-2,6)3 (1), which contains bridging alkoxide ligands and both terminal and bridging aryloxide ligands.  相似文献   

9.
Ni‐Co bimetallic and Ni or Co monometallic catalysts prepared for CO2 reforming of methane were tested with the stimulated biogas containing steam, CO2, CH4, H2, and CO. A mix of the prepared CO2 reforming catalyst and a commercial steam reforming catalyst was used in hopes of maximizing the CO2 conversion. Both CO2 reforming and steam reforming of CH4 occurred over the prepared Ni‐Co bimetallic and Ni or Co monometallic catalysts when the feed contained steam. However, CO2 reforming did not occur on the commercial steam reforming catalyst. There was a critical steam content limit above which the catalyst facilitated no more CO2 conversion but net CO2 production for steam reforming and water‐gas shift became the dominant reactions in the system. The Ni‐Co bimetallic catalyst can convert more than 70% of CO2 in a biogas feed that contains ~33 mol% of CH4, 21.5 mol% of CO2, 12 mol% of H2O, 3.5 mol% of H2, and 30 mol% of N2. The H2/CO ratio of the produced syngas was in the range of 1.8‐2. X‐ray absorption spectroscopy of the spent catalysts revealed that the metallic sites of Ni‐Co bimetallic, Ni and Co monometallic catalysts after the steam reforming of methane reaction with equimolar feed (CH4:H2O:N2 = 1:1:1) experienced severe oxidation, which led to the catalytic deactivation.  相似文献   

10.
Methanol synthesis from CO/H2 and CO2/H2 was carried out at atmospheric pressure over Cu/ZnO/Al2O3 catalyst. The formation and variation of surface species were recorded by in situ FT-IR spectroscopy. The result revealed that both CO and CO2 can serve as the primary carbon source for methanol synthesis. For CO/H2 feed gas, only HCOO-Zn was detected; however, for CO2/H2, both HCOO-Zn and HCOO-Cu were observed, and without CH3O-Cu. HCOO-Zn was the key intermediate. A scheme of methanol synthesis and reverse water-gas shift (RGWS) reaction was proposed.  相似文献   

11.
Deep eutectic solvents (DESs) are a class of promising media for gas separation. In order to examine the potential application of DESs for natural gas upgrading, the solubilities of H2S, CO2, and CH4 in choline chloride (ChCl) plus urea mixtures were measured in this work. The solubility data were correlated with Henry's law equation to calculate the thermodynamic properties of gas absorption processes, such as Henry's constants and enthalpy changes. Grand-canonical Monte Carlo simulations and quantum chemistry calculations were also performed to examine the mechanism of gas absorption processes. It is found that the absorption of H2S in ChCl + urea mixtures is governed by the hydrogen-bond interaction between Cl of ChCl and H of H2S, whereas the absorption of CO2 and CH4 in ChCl+urea mixtures is governed by the free volume of solvents. Based on the different behavior of gas absorption, high H2S/CO2, H2S/CH4, and CO2/CH4 selectivities can be achieved by adjusting the ratio of ChCl/urea in mixtures.  相似文献   

12.
Temperature-programmed desorption (TPD) and oxidation (TPO) were used to investigate the decomposition and oxidation of ethanol on Al2O3, Pd/Al2O3, and PdO/Al2O3. Ethyl--13C alcohol (CH3 13CH2OH) was adsorbed on the catalysts so that reaction pathways of the two carbons could be distinguished. Alumina was mainly a dehydration catalyst, but dehydrogenation was also observed and some carbon remained on the surface. In the presence of O2, A12O3 oxidized the decomposition products and the-carbon was oxidized faster. Ethanol, which was adsorbed on A12O3, decomposed much faster on Pd/A12O3 by diffusing to Pd and undergoing CO elimination to form CH4,13CO, H2, and surface carbon. On PdO/A12O3, the decomposition was slower than on Pd/A12O3 until lattice oxygen was extracted above 450 K; the decomposition products were oxidized by lattice oxygen. In the presence of gas phase O2, Pd/Al2O3 was an active oxidation catalyst at low temperature, but lattice oxygen had to be extracted from PdO/A12O3 before it had significant oxidation activity.  相似文献   

13.
《Ceramics International》2020,46(5):5566-5574
Electrospinning is a flexible synthesis method which not only facilitates the preparation of the nanofibers with dramatically improved surface area, but also takes advantage of the structural defects to form heterojunctions with photocatalytic activities. In this study for the first time, a continuous layer of composite ceramic nanofiber was fabricated by employing two-nozzle electrospinning method to make the nanofiber from a 12: 3: 3: 13: 87 (percent ratio) solution of aluminum acetate: boehmite nanoparticle: zinc acetate: polyacrylonitrile: dimethylformamide respectively. The step by step thermal post-processing was performed on the nanofiber to decompose the polymeric part and achieve a pure ceramic phase. Characterization of the ceramic nanofiber was conducted using Fe-SEM, FTIR, XRD, TGA-DTA, BET and UV–Vis techniques. The SEM and XRD results confirmed that the ceramic nanofiber with average diameter of 160 nm was composed of ZnO, Al2O3 and ZnAl2O4 phases. The resultant nanofiber was used as a photocatalyst for conversion of CO2 in presence of CH4 as the reductant and UV–A irradiation under mild conditions. The maximum conversion percentages of CO2 and CH4 after 240 min were 20% and 11.7% respectively.The present study proposes a method for preparing a ternary nanofiber of Al2O3, ZnO, and ZnAl2O4 with the potential to be used as a photocatalyst for conversion of CO2 in presence of CH4.  相似文献   

14.
Two different Ti-containing porous silica thin films having a hexagonal and cubic pore structure were synthesized and used as photocatalysts for the reduction of CO2 with H2O at 323 K. UV irradiation of the Ti-containing porous silica thin films in the presence of CO2 and H2O led to the formation of CH4 and CH3OH with a high quantum yield of 0.28%. These porous silica thin film photocatalysts having a hexagonal pore structure exhibited higher reactivity than the Ti-MCM-41 powder photocatalysts with the same pore structure.  相似文献   

15.
The influence of CO2 and H2O on the activity of 4% Sr-La2O3 mimics that observed with pure La2O3, and a reversible inhibition of the rate is observed. CO2 causes a greater effect, with decreases in rate of about 65% with O2 present and 90% in its absence, while with H2O in the feed, the rate decreased around 35-40% with O2 present or absent. The influence of these two reaction products on kinetic behavior can be described by assuming competitive adsorption on the surface, incorporating adsorbed CO2 and H2O in the site balance, and using rate expressions previously proposed for this reaction over Sr-promoted La2O3. In the absence of O2, the rate expression is $$r_{N_2 } = \frac{{k'P_{{\text{NO}}} P_{{\text{CH}}_{\text{4}} } }}{{{\text{(1 + }}K_{{\text{NO}}} P_{{\text{NO}}} {\text{ + }}K_{{\text{CH}}_{\text{4}} } P_{{\text{CH}}_{\text{4}} } {\text{ + }}K_{{\text{CO}}_{\text{2}} } P_{{\text{CO}}_{\text{2}} } {\text{ + }}K_{{\text{H}}_{\text{2}} {\text{O}}} P_{{\text{H}}_{\text{2}} {\text{O}}} {\text{)}}^{\text{2}} }},$$ which yields a good fit to the experimental data and gives optimized equilibrium adsorption constants that demonstrate thermodynamic consistency. With O2 in the feed, nondifferential changes in reactant concentrations through the reactor bed were accounted for by assuming integral reactor behavior and simultaneously considering both CH4 combustion and CH4 reduction of NO, which provided the following rate law for total CH4 disappearance: $$(r_{{\text{CH}}_{\text{4}} } )_{\text{T}} = \frac{{k'_{{\text{com}}} P_{{\text{CH}}_{\text{4}} } P_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} + k'_{{\text{NO}}} P_{{\text{NO}}} P_{{\text{CH}}_{\text{4}} } P_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} }}{{{\text{(1 + }}K_{{\text{NO}}} P_{{\text{NO}}} {\text{ + }}K_{{\text{CH}}_{\text{4}} } P_{{\text{CH}}_{\text{4}} } {\text{ + }}K_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} P_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} {\text{ + }}K_{{\text{CO}}_{\text{2}} } P_{{\text{CO}}_{\text{2}} } {\text{ + }}K_{{\text{H}}_{\text{2}} {\text{O}}} P_{{\text{H}}_{\text{2}} {\text{O}}} {\text{)}}^{\text{2}} }}.$$ The second term of this expression represents N2 formation, and it again fit the experimental data well. The fitting constants in the denominator, which correspond to equilibrium adsorption constants, were not only thermodynamically consistent but also provided entropies and enthalpies of adsorption that were similar to values obtained with other La2O3-based catalysts. Apparent activation energies typically ranged from 23 to 28 kcal/mol with O2 absent and 31-36 kcal/mol with O2 in the feed. With CO2 in the feed, but no O2, the activation energy for the formation of a methyl group via interaction of CH4 with adsorbed NO was determined to be 35 kcal/mol.  相似文献   

16.
The deactivation mechanism of Co/MgO catalyst for the reforming of methane with carbon dioxide was investigated. The conversion of CH4 displayed a significant decrease in the initial stage caused by carbon deposition. There were two types of cokes, carbon nanotubes (CNTs) and carbon nano-onions (CNOs). The number of the CNO layers that coated on the surface of Co nanoparticles (NPs) increased rapidly in the initial reforming time, which was responsible for the deactivation of the Co/MgO catalyst. The deposition of CNOs was attributed to the oxidation of Co NPs. Therefore, the deactivation of the Co/MgO catalyst was originated from the first oxidization of the Co NPs into Co3O4 by O species (OH intermediate, CO2, H2O) during the reforming reaction, which accelerates the formation of coke that blocked the active metal, thus led to catalyst deactivation.  相似文献   

17.
Reaction steps in the oxidation of CH4 to CO and H2 over a Rh(1 wt%)/-Al2O3 catalyst were studied using in situ DRIFTS at 973 K and 0.1 MPa. Product distribution and the resulting absorption band intensities of the respective adsorbates were strongly influenced by oxygen coverage and carbon deposits on the surface. CH4 is dehydrogenated to carbon deposits and H2 and is simultaneously oxidized to CO2 and H2O. OH surface groups in the support are involved in the CHx conversion to CO via reforming reaction. The reaction of surface carbon with CO2 was assumed to contribute to CO formation. Formate is a by-product of the reaction.  相似文献   

18.
The dynamics of produced CO and H2, measured by pulse surface reaction rate analysis (PSRA), revealed that the intermediate hydrocarbon species for the CO2-reforming of CH4 was highly hydrogen-deficient (CH0.75) on supported Co/Al2O3 catalyst. It was also found that the species was more reactive than the less hydrogen-deficient one (CH2.4) on Ni/Al2O3 catalyst.  相似文献   

19.
A comprehensive experimental and numerical study has been conducted to understand the influence of CH3Cl addition on CH4/O2/N2 premixed flames under oxygen enrichment. The laminar flame speeds of CH4/CH3Cl/O2/N2 premixed flames at room temperature and atmospheric pressure are experimentally measured using the Bunsen nozzle flame technique with a variation in the amount of CH3Cl in the fuel, equivalence ratio of the unburned mixture, and level of oxygen enrichment. The concentrations of major species and NO in the final combustion products are also measured. In order to analyze the flame structure, a detailed chemical kinetic mechanism is employed, the adopted scheme involving 89 gas-phase species and 1017 elementary forward reaction steps. The flame speeds predicted by this mechanism are found to be in good agreement with those deduced from experiments. Chlorine atoms available from methyl chloride inhibit the oxygen-enhanced flames, resulting in lower flame speeds. This effect is more pronounced in rich flames than in lean flames. Although the molar amount of CH3Cl in the methane flame is increased, the temperature at the post flame is not significantly affected, based on the numerical analysis. However, the measured concentration of NO is reduced by about 35% for the flame burning the same amount of methyl chloride and methane at the oxygen enrichment of 0.3. This effect is due to the reduction of the concentration of free radicals related to NO production within the flame. In the numerical simulation, as CH3Cl addition is increased, the heat flux is largely decreased for the oxygen-enhanced flame. It appears that the rate of the OH + H2 → H + H2O reaction is reduced because of the reduction of OH concentration. However, the function of CH3Cl as an inhibitor on hydrocarbon flames is weakened as the level of oxygen enrichment is increased from 0.21 to 0.5. __________ Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 6, pp. 103–111, November–December, 2006.  相似文献   

20.
Recently, the selective removal of H2S and CO2 has been highly desired in natural gas sweetening. Herein, four novel azole-based protic ionic liquids (PILs) were designed and prepared through one-step neutralization reaction. The solubility of H2S (0–1.0 bar), CO2 (0–1.0 bar), and CH4 (0–5.0 bar) was systematically measured at temperatures from 298.2 to 333.2 K. NMR and theoretical calculation were used to investigate the reaction mechanism between these PILs and H2S. Reaction equilibrium thermodynamic model (RETM) was screened to correlate the H2S solubility. Impressively, 1,5-diazabicyclo[4,3,0] non-5-ene 1,2,4-1H-imidazolide ([DBNH][1,2,4-triaz]) shows the highest H2S solubility (1.4 mol/mol or 7.3 mol/kg at 298.2 K and 1.0 bar) and superior H2S/CH4 (831) and CO2/CH4 (199) selectivities compared with literature results. Considering the excellent absorption capacity of H2S, high H2S/CH4, and CO2/CH4 selectivity, acceptable reversibility, as well as facile preparation process, it is believed that azole-based PILs provide an attractive alternative in natural gas upgrading process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号