首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this article, a novel design of single layer, compact, multiple input multiple output (MIMO) half‐mode substrate integrated waveguide (HMSIW) cavity backed quad element slot antenna with high front‐to‐back ratio (FTBR) is proposed. The proposed antenna consists of four rectangular SIW cavities with semi‐taper radiating slots. The antenna elements are placed in a fashion to achieve high isolation. This antenna is designed for WLAN vehicular communication system to cover the frequency range of 5.84 GHz to 5.96 GHz. It has high front to back ratio (FTBR) of more than 25 dB without using any external metallic reflector. It has more than 37 dB isolation in between orthogonal elements and more than 24 dB in between parallel elements. The envelop correlation coefficient (ECC) and diversity gain are 0.003 and 9.99 dB respectively in between all the elements. Moreover, the antenna has high gain and efficiency of more than 8 dB and 94%, respectively, in 10 dB impedance bandwidth. It can be tuned in a wide range of frequency.  相似文献   

2.
This article reports a high gain millimeter‐wave substrate integrated waveguide (SIW) antenna using low cost printed circuit board technology. The half elliptic slots which can provide small shunt admittance, low cross polarization level and low mutual coupling are etched on the board surface of SIW as radiation slots for large array application. Design procedure for analyzing the characteristics of proposed radiation slot, the beam‐forming structure and the array antenna are presented. As examples, an 8 × 8 and a 32 × 32 SIW slot array antennas are designed and verified by experiments. Good agreements between simulation and measured results are achieved, which shows the 8 × 8 SIW slot array antenna has a gain of 20.8 dBi at 42.5 GHz, the maximum sidelobe level of 42.5 GHz E‐plane and H‐plane radiation patterns are 22.3 dB and 22.1 dB, respectively. The 32 × 32 SIW slot array antenna has a maximum measured gain of 30.05 dBi at 42.5 GHz. At 42.3 GHz, the measured antenna has a gain of 29.6 dBi and a maximum sidelobe level of 19.89 dB and 15.0 dB for the E‐plane and H‐plane radiation patterns. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:709–718, 2015.  相似文献   

3.
This study presents a high‐efficient, compact, and broadband microstrip patch antennas (MPAs) based on substrate‐integrated waveguide (SIW) for X‐band applications. The proposed array consists of three stacked layers from top to bottom, including one layer as the antenna layer and two SIW layers as a feeding network. The performance was focused on improving the impedance bandwidth and radiation efficiency by mitigating the loss from the feed network while also maintaining the compact design. To this end, the SIW feeding network was designed to feed the MPA to save the physical aperture size which resulted in a more compact and efficient radiating structure. The overall size of the proposed array is compact and extra surface area around the radiation aperture has not been occupied. The measured ?10 dB impedance bandwidth span is from 8.9 to 10.9 GHz (20.2%). The maximum measured gain at 10.6 GHz is 10.6 dBi. The results show that the simulated radiation efficiency and the measured aperture efficiency are more than 75% and 50%, respectively. The fabricated array exhibits great advantages such as wide operating bandwidth, lightweight, low‐cost, high aperture efficiency, high radiation efficiency, and compactness which make it a good candidate for X‐band applications.  相似文献   

4.
A compact three‐antenna MIMO system based on a triangular half‐mode SIW cavity is proposed. Two isosceles‐right cavity edges are shorted by metallic vias while a hypotenuse is opened to radiate cavity energy into the air. By etching two T‐shaped slots and adopting coaxial feedings, three antennas are formed. The same operating frequencies are achieved by adjusting the position of these slots and high isolation is obtained by optimizing their length. The proposed design has attractive features of simple configuration and compact size, which is completely printed on a single‐layered substrate without external circuitries. A prototype with the overall size of 0.53λ0 × 0.53λ0 has been fabricated. Measured results exhibit the operating frequencies of about 3.51 GHz, high isolation of 16.0 dB, moderate gain of around 4.12 dBi, good radiation efficiency of 81.22%, and low envelope correlation coefficient of 0.16.  相似文献   

5.
A compact planar frequency reconfigurable dual‐band multiple‐input‐multiple‐output (MIMO) antenna with high isolation and pattern/polarization diversity characteristics is presented in this article for WiFi and WiMAX standards. The MIMO configuration incorporates two symmetrically placed identical antenna elements and covers overall size of 24 mm × 24 mm × 0.762 mm. Reconfiguration of each antenna element is achieved by using a PIN diode which allows antennas to switch from state‐1 (2.3‐2.4 GHz and 4.6‐5.5 GHz) to state‐2 (3.3‐3.5 GHz and 4.6‐5.5 GHz). In state‐1, the configuration offers isolation ≥18 dB and 20 dB in lower band (LB) and upper band (UB) respectively; whereas, in state‐2, isolation ≥21 dB and 20 dB in LB and UB respectively is achieved. The same decoupling circuit provides high isolation in dual‐band of two states, which makes overall size of the proposed design further compact. The antennas are characterized in terms of envelope correlation coefficient, radiation pattern, gain, and efficiency. From measured and simulated results, it is verified that the proposed frequency reconfigurable dual‐band multi‐standard MIMO antenna design shows desirable performance in both operating bands of each state and compact size of the design makes it suitable for small form factor devices used in future wireless communication systems.  相似文献   

6.
In this research, compact tapered feed 2 × 2/4 × 4 MIMO antenna are presented and investigated. The proposed MIMO antenna consists of a square patch and modified rectangular ground, which is chamfered at edges and etched with two semicircular slots. Likewise, obstruction caused by WiMAX and WLAN interfering bands is also taken care of by introducing notched filters. WiMAX is removed by embedding an rotated T‐type stub and a C‐type slot eliminates the WLAN band. The proposed antenna configuration covers the usable bandwidth of 3.07 to 11.25 GHz for 2 × 2 MIMO and 2.97 to 11.28 GHz for 4 × 4 MIMO. Also, both the MIMO antennas provide isolation <–20 dB. Proposed MIMO antennas are fabricated and characterized in near, far‐field, and diversity performance where envelope correlation coefficient, directive gain (DG), total active reflection coefficient (TARC), and channel capacity loss are simulated and measured. 4 × 4 MIMO antenna configuration provides stable gain with a maximum radiation efficiency of 91% and monopole radiation patterns.  相似文献   

7.
A method to enhance the gain of substrate integrated waveguide (SIW) beam scanning antenna is proposed in this article. 2 × 2 SIW cavity‐backed sub‐arrays are employed in array design. The antenna is constructed on two layers. The top layer places four SIW cavity‐backed sub‐arrays as radiating elements and the bottom layer is an SIW transmission line to feed the sub‐arrays. Beam scanning feature can be obtained due to the frequency dispersion. Moreover, through separating radiators to the other layer and using 2 × 2 SIW cavity‐backed sub‐arrays as radiating parts, the antenna gain is improved significantly. For a linear array, 4.1 to 6.8 dB gain enhancement is achieved compared to a conventional SIW beam scanning antenna with the same length. Then, the linear array is expanded to form a planar array for further gain improvement. A 64‐element planar beam scanning array is designed, fabricated, and tested. Experimental results show that the proposed planar array has a bandwidth from 18.5 GHz to 21. 5 GHz with beam scanning angle from ?5° to 11.5° and gain in the range of 20.5 to 21.8 dBi. The proposed high gain beam scanning antennas have potential applications in radar detection and imaging.  相似文献   

8.

A compact multiband pattern diversity antenna for Multiple input multiple output (MIMO) applications is being proposed. The pattern diversity antenna is designed for 2.6 GHz LTE, 3.5/5.5 GHz WiMax, 3.3 GHz MIMO and 5.2 GHz WLAN applications for mobile devices. The compact size of the MIMO antenna (41.05 × 21.1 mm) is due to having compact individual monopole antennas each of dimension 17.5 × 10 mm. A T-shaped and inverted L-shaped stub in the ground plane reduces mutual coupling due to near field whereas slots introduced in the ground plane prevents current to flow through the common ground plane. The important characteristics of MIMO antenna like diversity gain and envelope correlation coefficient have also been presented. Measured and simulated radiation patterns presented show that the MIMO antenna proposed provide pattern diversity.

  相似文献   

9.
A planar and compact substrate integrated waveguide (SIW) cavity backed antenna and a 2 × 2 multi‐input multi‐output (MIMO) antenna are presented in this study. The proposed antenna is fed by a grounded coplanar waveguide (GCPW) to SIW type transition and planned to be used for millimeter‐wave (mm‐wave) fifth generation (5G) wireless communications that operates at 28, 38, 45, and 60 GHz frequency bands. Moreover, the measured impedance bandwidth (|S11| ≤ ? 10 dB ) of the antenna covers 27.55 to 29.36, 37.41 to 38.5, 44.14 to 46.19, and 57.57 to 62.32 GHz bands and confirms the quad‐band characteristic. Omni‐directional radiation characteristics are observed in the far‐field radiation pattern measurements of the antenna over the entire operating frequency. The reported antenna is compact in size (9.7 × 13.3 × 0.6 mm3) and the gain values at each resonance frequency are measured as 3.26, 3.28, 3.34, and 4.51 dBi, respectively. Furthermore, the MIMO antenna performance is evaluated in terms of isolation, envelope correlation coefficient and diversity gain.  相似文献   

10.
This work presents a triband antenna, which is compact, low profile, and covers the bandwidth requirements for WLAN and WiMAX applications. The proposed design is a modified and miniaturized printed monopole antenna. It consists of beveling rectangular patch, a Pi‐shape slot element, and an inverted‐L slot element to achieve resonance in three bands. The physical size of the antenna is 27.5 × 20 mm2 while the electrical size is 0.26 λ0 × 0.23 λ0 at the lower operating frequency which is very compact as compared to other triband designs. It works in three bands, that is, 2.37 to 2.52 GHz, 3.35 to 3.90 GHz, and 4.97 to 7.85 GHz with |S11| < ? 10 dB within these operating bands. The prototype of the proposed miniaturized antenna has been fabricated and the measured results are provided for validation. Antenna performance is studied in terms of input match, gain, radiation efficiency, surface current distributions, and radiation pattern. The antenna shows a nearly omnidirectional radiation pattern with peak efficiency of 90% and acceptable gain of 4 dBi over the three operating bands of WLAN and WiMAX. The prototype of the antenna is fabricated, and simulated results have been verified through measurements.  相似文献   

11.
Here, an ultra‐compact Multi‐Input‐Multi‐Output (MIMO) antenna system is presented for Wireless Local Area Network (WLAN) applications. The proposed antenna compactness approach is based on using Cylindrical‐Dielectric‐Resonator‐Antenna (CDRA) symmetry with the help of image theory to achieve the best size reduction of the resonators and maintain the resonance frequency of the original CDRA. The electric/magnetic walls approach is utilized to miniaturize the size by exploring the symmetry and antisymmetry of the resonant mode. First, a CDRA for MIMO system is designed and tested in terms of return loss and radiation efficiency. Then, two configurations of MIMO‐Antennas (two and four ports) are examined by using the same substrate size. The 2‐port‐MIMO antenna is built from two half‐CDRs (HCDRs) facing each other. Similarly, four‐quarter‐CDRs (QCDRs) are created to form a 4‐port MIMO antenna system. As a result, a 75% size reduction is achieved (size of 30 × 30 × 7.62 mm3). The measured impedance bandwidth for the 4‐port MIMO antenna is 5.4% (5.4‐5.7 GHz), with more than 15 dB isolation levels. Proper levels of Envelope Correlation Coefficients (ECCs) are also achieved (1 × 10?2‐4 × 10?2), with a channel capacity loss (CCL) of 0.04 bits/S/Hz. The proposed MIMO antennas are suitable for compact wireless communication systems.  相似文献   

12.
The modern portable communication devices demand compact antenna with superior performance and reduced size and weight. The design and development of such antennas for broadband applications is a challenge for the researchers. In this paper, a microstrip patch antenna with h BN nanoceramic‐based substrate for S‐band application has been proposed and analyzed its performance experimentally. The proposed antenna has been fabricated using powder metallurgy and etching process. The performance of the fabricated antenna has been analyzed in terms of its characteristics such as return loss, gain, and radiation efficiency. Return loss of the proposed antenna is obtained as ?43 dB at resonance frequency. Proposed antenna using h‐BN nanoceramic substrate achieves peak gain of 8 dB and acceptable radiation efficiency in S‐band.  相似文献   

13.
In this article, a compact uniplanar asymmetric coplanar strip (ACS)‐fed multiband antenna with extended rectangular strips is proposed for portable system applications. It is composed of a modified mouse and rectangular‐shaped radiating strip for generating three resonance frequency bands simultaneously. The proposed antenna has a compact size of 16 × 26 × 1.6 mm3. Antenna has |S11| ≤ ?10 dB at three independent controlled bandwidths from 2.2 to 2.4 GHz, 3.5 to 3.7 GHz, and 4.85 to 6.85 GHz. The proposed ACS‐fed antenna is suitable for LTE 2300, WiBro 2300 GHz, 5.2/5.8‐GHz WLAN, 3.5/5.5‐GHz WiMAX, 4.9‐GHz US public safety band, and 5.9‐GHz WAVE applications. The antenna has omnidirectional radiation characteristics in the desired frequency bands in both E‐plane and H‐plane. It has better gain value performance compared with other antenna designs discussed in the literature.  相似文献   

14.
A compact MIMO antenna was proposed in this article. The designed antenna is compact in size with dimensions of 20 × 34 × 1.6 mm. In this proposed antenna model the patch consisting of two counter facing C‐shaped elements facing each other in which a hexagonal ring attached to a strip line which is placed in between the two C‐shaped patch acts as the stub. The novelty of the antenna elements lies isolation improvement by using the ground stub with the use of circular ring resonator. The proposed antenna operates in four bands in which 2.66 to 3.60 GHz (Wi‐Max, Wi‐Fi), 4.52 to 5.78 GHz (WLAN), 6.59 to 7.40 GHz (satellite communication), and 9.55 to 10.91 GHz and having bandwidth of 0.94, 1.26, 0.81, and 1.36 GHz at four bands. The envelope correlation coefficient is ECC ≤ 0.3 and diversity gain > 9.8 dB for the operating bands of antenna proposed. This antenna can work in the bands of Wi‐Max, Wi‐Fi, WLAN, satellite communication in X‐band and for radio location, and astronomy applications.  相似文献   

15.
In this endeavor, a new multiple‐input‐multiple‐output antenna with a sharp rejection at wireless local area network (WLAN) band is designed and practically examined for portable wireless ultra‐wideband applications. The intended diversity antenna possess a small size of 15 mm × 26 mm and two inverted L‐strip are loaded over the conventional rectangular patch antenna to form protrudent‐shaped radiator that acts as a radiating element. The sharp band‐rejection capability at WLAN is established by incising the L‐shaped slits at the decoupling structure. More than ?21 dB isolation is accomplished for the complete working band (ie, 2.87 ‐17 GHz). Degradation in the antenna efficiency at the center frequency of band rejection corroborates the good interference rejection capability. The working capabilities of the intended antenna are tested by using the isolation between the ports, total efficiency, gain, envelope correlation coefficient, radiation pattern, mean effective gain, and total active reflection coefficient.  相似文献   

16.
A low‐profile self‐triplexed slot antenna is proposed for multiple system integrations. The antenna comprises of hybrid substrate integrated waveguide (SIW) cavity (a combination of a half‐mode circular and half‐mode rectangular SIW), radiating slot, and feeding network. A slot is imprinted on the upper metal‐layer of the SIW which splits the cavity into three radiating sections. It offers tri‐frequency bands when each section is excited separately. By finely tuning the antenna dimensions, it produces three frequency‐bands around 5.57, 7.17, and 7.65 GHz simultaneously utilizes a single slot with maintaining the intrinsic input‐port isolation better than 20 dB. This property helps to introduce the self‐triplexing phenomenon. Compared with the conventional multiband antennas that use an extra circuitry to ensure the port isolations, this design preserves compactness and easy to integrate with planar circuits Moreover, the proposed antenna is fabricated and the measured results mutually agreed with the simulated counterparts. The proposed design can be a feasible option for mobile transceiver applications.  相似文献   

17.
In this article, a study of planar triple band unidirectional Substrate Integrated Waveguide (SIW) cavity backed slot antenna using equivalent circuit model is presented. The proposed antenna uses a modified dumbbell shaped slot of much larger length placed in a planar SIW cavity to excite three closely spaced SIW cavity hybrid modes which help the slot to radiate into free space. The design is analyzed with the help of equivalent circuit model to predict the resonant frequencies of the design and also to explain the excitation mechanism of the proposed slot antenna. The proposed circuit model is validated by comparing its performance with the simulation model for a wide range of parametric variation. The relationship between modification in design dimension with the variation of coupling between feed line and cavity modes is studied which gives a design guideline for the proposed antenna. The fabricated prototype of the antenna resonates at 7.39, 9.43, and 14.79 GHz with a gain of 3.2, 4.9, 4.7 dBi and front‐to‐back ratio (FTBR) of 10 dB, respectively, at three resonant frequencies which makes it suitable for C (4–8 GHz), X (8–12 GHz), and Ku (12–18 GHz) band applications.  相似文献   

18.
A compact four and eight elements multiple‐input‐multiple‐output (MIMO) antenna designed for WLAN applications is presented in this article. The antenna operates in IEEE 802.11b/g WLAN (2.4 GHz), IEEE 802.11 ac/n WLAN (5.2 and 5.8 GHz) and WiMAX (5.8 GHz) bands. The resonated mode of the antenna is achieved by two unequal Reverse‐L shaped, line‐shaped slots on top and parasitic element on the ground layer. The single antenna provides wide bandwidth of about 29% (2.3‐3.1 GHz) in lower and 22% (4.9‐6.1 GHz) in the upper band. The compactness of the single element antenna is found about 95% with respect to the patch and 61% in overall dimension. Thereafter an investigation is carried out to design two, four, and eight elements MIMO antennas. All of the multi‐element structures provide compact configuration and cover entire WLAN frequency ranges (2.4‐2.48 and 5.15‐5.85 GHz). The dimension of the proposed eight element MIMO antenna is 102 × 52 × 1.6 mm3. It covers the frequency (measured) from 2.4 to 3.1 GHz and 5 to 6.1 GHz. The diversity performance of the proposed MIMO antenna is also assessed in terms of the envelope correlation coefficient (ECC), diversity gain (DG), and total active reflection co‐efficient (TARC). The ECC is found <0.5 whereas the DG >9.0 is obtained for the desired bands.  相似文献   

19.
This article presented a substrate integrated waveguide (SIW) cavity‐backed self‐diplexing antenna array with frequency beam scanning characteristic. The proposed array consists of 16 SIW cavity‐backed slot antennas. The SIW cavity‐backed slot antenna can be fed by two separate ports to resonate at two different frequencies and achieve high isolation better than 20 dB between two input ports. The proposed element is a typical self‐diplexing antenna. These cavity‐backed slot antennas are shunt‐fed by a compact 1 to 16 SIW power divider and series‐fed by a set of microstrip lines, respectively. As a result, this array achieves an unidirectional radiation pattern at 10.2 GHz with high gain of 15.10 dBi, and a frequency beam scanning characteristic from 7.0 to 9.0 GHz ranging from ?50° to 46°.  相似文献   

20.
In this article, a substrate integrated waveguide (SIW) antenna utilizing odd‐mode spoof surface plasmon polariton (SSPP) for broadside radiation is proposed. Double gratings are etched on the top surface of SIW and the SSPP odd‐mode is excited on this hybrid SIW‐SSPP structure. The proposed SIW antenna has open‐circuit termination and can realize broadside radiation. A prototype of the SIW‐based odd‐mode antenna is fabricated. Reasonable accordance is achieved between measured results and simulated results. The antenna impedance bandwidth is about 5.5% (12.4~13.1 GHz) with |S11| < ?10 dB. Stable broadside radiation is also realized within the operating band of 12.3~13.3 GHz and the measured gain varies from 5.66 to 6.34 dB in the frequency band. The proposed broadside radiation antenna is suitable for wireless communication systems due to its compact structure and good radiation performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号