首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This paper introduces a robust adaptive fractional‐order non‐singular fast terminal sliding mode control (RFO‐TSM) for a lower‐limb exoskeleton system subject to unknown external disturbances and uncertainties. The referred RFO‐TSM is developed in consideration of the advantages of fractional‐order and non‐singular fast terminal sliding mode control (FONTSM): fractional‐order is used to obtain good tracking performance, while the non‐singular fast TSM is employed to achieve fast finite‐time convergence, non‐singularity and reducing chattering phenomenon in control input. In particular, an adaptive scheme is formulated with FONTSM to deal with uncertain dynamics of exoskeleton under unknown external disturbances, which makes the system robust. Moreover, an asymptotical stability analysis of the closed‐loop system is validated by Lyapunov proposition, which guarantees the sliding condition. Lastly, the efficacy of the proposed method is verified through numerical simulations in comparison with advanced and classical methods.  相似文献   

2.
This paper focuses on an adaptive practical preassigned finite‐time control problem for a class of unknown pure‐feedback nonlinear systems with full state constraints. Two new concepts, called preassigned finite‐time function and practical preassigned finite‐time stability, are defined. In order to achieve the main result, the pure‐feedback system is first transformed into an affine strict‐feedback nonlinear system based on the mean value theorem. Then, an adaptive preassigned finite‐time controller is obtained based on a modified barrier Lyapunov function and backstepping technique. Finally, simulation examples are exhibited to demonstrate the effectiveness of the proposed scheme.  相似文献   

3.
In this paper, a solution to the continuous output‐feedback finite‐time control problem is proposed for a class of second‐order MIMO nonlinear systems with disturbances. First, a continuous finite‐time controller is designed to stabilize system states at equilibrium points in finite time, which is proven correct by a constructive Lyapunov function. Next, because only the measured output is available for feedback, a continuous nonlinear observer is presented to reconstruct the total states in finite time and estimate the unknown disturbances. Then, a continuous output‐feedback finite‐time controller is proposed to track the desired trajectory accurately or alternatively converge to an arbitrarily small region in finite time. Finally, proposed methods are applied to robotic manipulators, and simulations are given to illustrate the applicability of the proposed control approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper focuses on the problem of adaptive neural control for a class of uncertain nonlinear pure‐feedback systems with multiple unknown time‐varying delays. The considered problem is challenging due to the non‐affine pure‐feedback form and the unknown system functions with multiple unknown time‐varying delays. Based on a novel combination of mean value theorem, Razumikhin functional method, dynamic surface control (DSC) technique and neural network (NN) parameterization, a new adaptive neural controller which contains only one parameter is developed for such systems. Moreover, The DSC technique can overcome the problem of ‘explosion of complexity’ in the traditional backstepping design procedure. All closed‐loop signals are shown to be semi‐globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of the origin. Two simulation examples are given to verify the effectiveness of the proposed design.  相似文献   

5.
This work proposes a new adaptive terminal iterative learning control approach based on the extended concept of high‐order internal model, or E‐HOIM‐ATILC, for a nonlinear non‐affine discrete‐time system. The objective is to make the system state or output at the endpoint of each operation track a desired target value. The target value varies from one iteration to another. Before proceeding to the data‐driven design of the proposed approach, an iterative dynamical linearization is performed for the unknown nonlinear systems by using the gradient of the nonlinear system with regard to the control input as the iteration‐and‐time‐varying parameter vector of the equivalent linear I/O data model. By virtue of the basic idea of the internal model, the inverse of the parameter vector is approximated by a high‐order internal model. The proposed E‐HOIM‐ATILC does not use measurements of any intermediate points except for the control input and terminal output at the endpoint. Moreover, it is data‐driven and needs merely the terminal I/O measurements. By incorporating additional control knowledge from the known portion of the high order internal model into the learning control law, the control performance of the proposed E‐HOIM‐ATILC is improved. The convergence is shown by rigorous mathematical proof. Simulations through both a batch reactor and a coupled tank system demonstrate the effectiveness of the proposed method.  相似文献   

6.
In this paper, a finite‐time sliding mode observer for nonlinear systems with unknown inputs is proposed. The observer is based on a method for the solution of time‐varying algebraic equations. This algebraic solver is shown to converge in finite time by means of Lyapunov analysis; furthermore, a way to tune it so that it converges after a user‐defined amount of time is presented. Through the use of this technique and sliding mode differentiators, the state variables and unknown inputs of a class of nonlinear systems, which do not need to be affine in the inputs, can be estimated without the explicit use of state transformations. Both the algebraic solver and the proposed observer are illustrated through simulation examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper addresses a low‐complexity distributed containment control problem and its extension to fault‐tolerant control for networked nonlinear pure‐feedback systems under a directed graph. The multiple dynamic leaders are neighbors of only a subset of the followers described by completely non‐affine multi‐input multi‐output pure‐feedback dynamics. It is assumed that all followers' nonlinearities are heterogeneous and unknown. The proposed containment controller is implemented by using only error surfaces integrated by performance bounding functions and does not require any differential equations for compensating uncertainties and faults. Thus, compared with the previous containment control approaches for multi‐agent systems with unknown non‐affine nonlinearities, the distributed containment control structure is simplified. In addition, it is shown that the proposed control scheme can be applied to the fault‐tolerant containment control problem in the presence of unexpected system and actuator faults, without reconstructing any control structure. It is shown from Lyapunov stability theorem that all followers nearly converge to the dynamic convex hull spanned by the dynamic leaders and the containment control errors are preserved within certain given predefined bounds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the continuous finite‐time control problem of high‐order uncertain nonlinear systems with mismatched disturbances through the terminal sliding mode control method. By constructing a novel dynamic terminal sliding manifold based on the disturbance estimations of high‐order sliding mode observers, a continuous finite‐time terminal sliding mode control method is developed to counteract mismatched disturbances. To avoid discontinuous control action, the switching terms of a dynamic terminal sliding manifold are designed to appear only in the derivative term of the control variable. To validate its effectiveness, the proposed control method is applied to a DC‐DC buck converter system. The experimental results show the proposed method exhibits better control performance than a chattering free controller, such as mismatched disturbances rejection and smaller steady‐state fluctuations.  相似文献   

9.
This paper gives a first try to the finite‐time control for nonlinear systems with unknown parametric uncertainty and external disturbances. The serious uncertainties generated by unknown parameters are compensated by skillfully using an adaptive control technique. Exact knowledge of the upper bounds of the disturbances is removed by employing a disturbance observer–based control method. Then, based on the disturbance observer–based control, backstepping technique, finite‐time adaptive control, and Lyapunov stability theory, a composite adaptive state‐feedback controller is strictly designed and analyzed, which guarantees the closed‐loop system to be practically finite‐time stable. Finally, both the practical and numerical examples are presented and compared to demonstrate the effectiveness of the proposed scheme.  相似文献   

10.
This article investigates the finite‐time output tracking problem for a class of nonlinear systems with multiple mismatched disturbances. To efficiently estimate the disturbances and their derivatives, a continuous finite‐time disturbance observer (CFTDO) design method is developed. Based on the modified adding a power integrator method and CFTDO technique, a composite tracking controller is constructed such that the system output can track the desired reference signal in finite time. Simulation results demonstrate the effectiveness of the proposed control approach.  相似文献   

11.
This paper presents a fast terminal sliding‐mode tracking control for a class of uncertain nonlinear systems with unknown parameters and system states combined with time‐varying disturbances. Fast terminal sliding‐mode finite‐time tracking systems based on differential evolution algorithms incorporate an integral chain differentiator (ICD) to feedback systems for the estimation of the unknown system states. The differential evolution optimization algorithm using ICD is also applied to a tracking controller, which provides unknown parametric estimation in the limitation of unknown system states for trajectory tracking. The ICD in the tracking systems strengthens the tracking controller robustness for the disturbances by filtering noises. As a powerful finite‐time control effort, the fast terminal sliding‐mode tracking control guarantees that all tracking errors rapidly converge to the origin. The effectiveness of the proposed approach is verified via simulations, and the results exhibit high‐precision output tracking performance in uncertain nonlinear systems.  相似文献   

12.
This paper presents a new longitudinal autopilot to address the finite‐time tracking problem for uncertain agile missiles. The proposed autopilot is essentially a composite control scheme, which is obtained through the finite‐time control methodology and the nonlinear disturbance observer (NDOB) approach. The key idea in this scheme is that the NDOB is adopted to estimate the aerodynamic uncertainties and external disturbances in an integrated manner. With the aid of the finite‐time bounded function and the Lyapunov function method, the finite‐time stability of the closed‐loop system is established, which shows that the angle‐of‐attack response will converge to the external command signal in finite time. Numerical simulation results are presented to demonstrate the superiority of the proposed scheme.  相似文献   

13.
This paper studies the robustness problem of the min–max model predictive control (MPC) scheme for constrained nonlinear time‐varying delay systems subject to bounded disturbances. The notion of the input‐to‐state stability (ISS) of nonlinear time‐delay systems is introduced. Then by using the Lyapunov–Krasovskii method, a delay‐dependent sufficient condition is derived to guarantee input‐to‐state practical stability (ISpS) of the closed‐loop system by way of nonlinear matrix inequalities (NLMI). In order to lessen the online computational demand, the non‐convex min‐max optimization problem is then converted to a minimization problem with linear matrix inequality (LMI) constraints and a suboptimal MPC algorithm is provided. Finally, an example of a truck‐trailer is used to illustrate the effectiveness of the proposed results. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
A new convergence condition is proposed for the super‐twisting sliding mode observer in this paper, where Lyapunov stability analysis is used as the main method to get the new convergence condition. The super‐twisting sliding mode observer is designed to obtain unknown system states of the second order nonlinear system with bounded uncertainties and disturbances. By involving a quadratic Lyapunov function, the Lyapunov approach is applied to the stability analysis of the super‐twisting observer, from which a new convergence condition is obtained to guarantee the finite time convergence of the observer. Simulation results of a pendulum and a rigid manipulator are included to demonstrate the effectiveness of the new convergence condition.  相似文献   

15.
This paper presents a new discrete‐time adaptive iterative learning control approach (AILC) for a class of time‐varying nonlinear systems with nonparametric uncertainties and non‐repeatable external disturbances by incorporating a novel iterative estimate scheme. A major distinct feature of the presented approach is that uncertainties can be completely compensated for, using only I/O data. Another distinct feature is that the pointwise convergence is achieved over a finite time interval without requiring the matching condition on initial states and reference trajectory. Rigorous mathematical analysis is developed, and simulation results illustrate the effectiveness of the proposed approach.  相似文献   

16.
The distributed output‐feedback tracking control for a class of networked multiagents in nonaffine pure‐feedback form is investigated in this article. By introducing a low‐pass filter and some auxiliary variables, we first transform the nonaffine system into the affine form. Then, the finite‐time observer is designed to estimate the states of the newly derived affine system. By applying the fraction dynamic surface control approach and the neural network‐based approximation technique, the distributed output‐feedback control laws are proposed and it is proved that the tracking errors converge to an arbitrarily small bound around zero in finite time. Finally, some simulation examples are provided to confirm the effectiveness of the developed method.  相似文献   

17.
This study proposes the design of unscented Kalman filter for a continuous‐time nonlinear fractional‐order system involving the process noise and the measurement noise. The nonlinear fractional‐order system is discretized to get the difference equation. According to the unscented transformation, the design method of unscented Kalman filter for a continuous‐time nonlinear fractional‐order system is provided. Compared with the extended Kalman filter, the proposed method can obtain a more accurate estimation effect. For fractional‐order systems containing non‐differentiable nonlinear functions, the method proposed in this paper is still effective. The unknown parameters are also discussed by the augmented vector method to achieve the state estimation and parameter identification. Finally, two examples are offered to verify the effectiveness of the proposed unscented Kalman filter for nonlinear fractional‐order systems.  相似文献   

18.
This paper addresses the specified‐time control problem for control‐affine systems and rigid bodies, wherein the specified‐time duration can be designed in advance according to the task requirements. By using the time‐rescaling approach, a novel framework to solve the specified‐time control problem is proposed, and the original systems are converted to the transformation systems based on which the specified‐time control laws for both control‐affine systems and rigid bodies are studied. Compared with the existing approaches, our proposed specified‐time control laws can be derived from the known stabilization control laws. To our best knowledge, it is the first time that transformation system–based specified‐time control framework for control‐affine system and rigid body dynamics is proposed. To further improve the convergence performance of specified‐time control, a finite‐time attitude synchronization control law for rigid bodies on rotation matrices is proposed, and thereby, the finite‐time–based specified‐time control law is designed eventually. In the end, numerical simulations and SimMechanics experiments are provided to illustrate effectiveness of the theoretical results.  相似文献   

19.
In this paper, output‐feedback control strategies are proposed for lower‐triangular nonlinear nonholonomic systems in any prescribed finite time. Specifically, by employing the input‐state–scaling technique, the controlled systems are firstly converted into lower‐triangular nonlinear systems, which makes it possible to study such systems using the high‐gain technique. Then, by introducing a scaling of the state by a function that grows unbounded toward the terminal time and proposing a high‐gain observer–prescribed finite time recovering the system states, the output‐feedback regulation control problem in any prescribed finite time is firstly achieved for nonlinear nonholonomic systems with unknown constant incremental rate. Moreover, by designing another time‐varying high gain, the output‐feedback stabilization control problem in any prescribed finite time is then achieved for nonlinear nonholonomic systems with a time‐varying incremental rate. Finally, a numerical example is introduced to show the effectiveness of proposed control strategies.  相似文献   

20.
This paper addresses the problem of finite‐time stabilization for a class of low‐order stochastic upper‐triangular nonlinear systems corrupted by unknown control coefficients. Unlike the relevant schemes, the control strategy draws into a dominate gain to cope with the deteriorative effects of both uncertain nonlinearities and unknown control coefficients without using traditional adaptive compensation method. Then, a state feedback controller is constructed by the adding a power integrator method and modified homogeneous domination approach, to ensure the finite‐time stability of the closed‐loop system. Finally, the effectiveness of proposed control strategy has been demonstrated by a simulation example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号