共查询到20条相似文献,搜索用时 15 毫秒
1.
A miniaturized dual‐band C‐shaped dielectric resonator antenna (DRA) with partial ground plane is presented for IEEE 802.16d fixed WiMAX applications at 3.5 and 5.8 GHz. The design starts with dimensioning a single band cylindrical DRA, which has been transferred to get a dual‐band ring‐shaped DRA. One portion of the ring‐shaped DRA is removed for forming a C‐shaped DRA to get a more compact antenna. For easy fabrication, the compact DRA dimensioned as 60 × 50 × 6.6 mm3 is excited by a microstrip line feeding. The design parameters are inner and outer radii of the C‐shaped antenna and air gap (between DR and ground) to control both the resonating frequency and the quality factor. The result shows peak gain around 3.26 and 5.55 dBi at 3.5 and 5.8 GHz, respectively. The obtained results indicate very good agreement between the simulated and measured results. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 22: 682–689, 2012. 相似文献
2.
Ujjal Chakraborty Ashim K. Biswas Sandip Maity Bappadittya Roy Sourav Roy 《国际射频与微波计算机辅助工程杂志》2019,29(2)
An H‐shaped dielectric resonator array antenna is presented for wideband applications. The proposed antenna is excited by slot feed mechanism and investigated experimentally. The antenna covers the frequency ranges from 1.41 to 2.59 GHz, and 4.73 to 6.06 GHz with the corresponding impedance bandwidth of 59% and 24.65%, respectively. The simulation results fulfill the bandwidth requirements of IEEE 802.11a/b/g (2.4‐2.484 GHz/5.15‐5.35 GHz/5.725‐5.825 GHz) for Wireless local area network (WLAN) applications. The proposed antenna has simple structure, easy to fabricate and its measured radiation pattern shows a reliable performance in the desired operating bands. 相似文献
3.
Half‐hexagonal microstrip antenna (H‐HMSA) is a compact version of HMSA, as it resonates at the same fundamental mode frequency. In this article, a compact configuration of a single layer, broadband gap‐coupled H‐HMSA has been proposed. Gap‐coupled H‐HMSA is fed indirectly by a λ/2 microstrip‐line resonator. Broad bandwidth (BW) is achieved with an effective use of resonance introduced by λ/2 resonator and gap‐coupled half‐hexagonal radiating patches. A peak gain of 7.07 dBi and measured BW (S11 ≤ ?10 dB) of 11.5% at the center frequency of 5.2 GHz have been achieved, which occupies a small volume of 0.023 λ03 including the ground plane. The radiation patterns remain in the broadside direction throughout the return loss BW. Simulated results of the proposed antenna configuration are experimentally validated with good agreement. 相似文献
4.
A new meandered‐line inductor fed wideband circularly polarized rectangular dielectric resonator antenna (DRA) with partial ground plane has been developed in this work. Meandered‐line inductor feed and partial ground plane are used for generation of orthogonal modes, hence circular polarization (CP) in DRA. By controlling the length of meandered‐line inductor, three different CP DRA have been designed for different wireless applications such as Wi‐MAX and WLAN/ISM 2400 band. Distribution of electric field inside rectangular DRA shows that all three antenna having TE11δ mode. Finally, a lower frequency band application at 2.4 GHz (ISM) called here as Proposed Antenna, has been considered for fabrication. This designed antenna shows measured ?10 dB input impedance bandwidth of 20.67% and 3‐dB axial ratio bandwidth of 27.95% in broadside direction. All these three CP antennas (Antenna‐1 to Proposed Antenna) are showing stable gain and right hand circular polarization in broadside direction. 相似文献
5.
In this article, a new radiating stub microstrip feed has been investigated with asymmetrical ground plane for generation of circular polarization (CP) in a dielectric resonator antenna (DRA). Here, asymmetrical ground plane and 3 radiating stubs with microstrip feed line are used for generation of 2 different modes namely TE11δ and TE12δ in rectangular DRA. By using mode matching concepts, these modes are responsible for enhancing the impedance bandwidth (TE12δ ie, and ) and axial ratio (AR) bandwidth (TE11δ ie, and ) in proposed antenna. Designed antenna offers measured input impedance bandwidth (|S11| < ?10 dB) and AR bandwidth (AR < 3‐dB) of 44.78%, ranging from 4.6 to 6.9 GHz and 23.32%, ranging from 4.6 to 6.9 GHz, respectively. It has been observed that proposed antenna shows left‐handed CP fields in boresight direction with average gain of 3.15 dBic and radiation efficiency of 90.54%. Designed antenna is suitable for Wi‐MAX (3.3‐3.7 GHz) applications. 相似文献
6.
In this article, design and development of wideband circularly polarized (CP) rectangular dielectric resonator antenna (RDRA) is presented. To generate wideband CP in proposed antenna, different feeding mechanism have been studied. Three antenna configurations based on different feeding have been discussed using single and dual pair of microstrip lines aligned perpendicular to each other to generate orthogonal modes resulting in circular polarization. It has been claimed here that excitation of RHCP/LHCP field and its direction of radiation could be controlled using height of microstrip feed lines. Finally antenna configuration‐3 is fabricated and measured which shows 36.8% of input impedance bandwidth (3.48–5.05 GHz) and axial ratio bandwidth of 14.46% (3.67–4.24 GHz) in broadside direction (at Φ = 0°, θ = 0°). The final proposed structure exhibits consistent far‐field characteristics with average LHCP gain of 6.4 dB and almost stable radiation efficiency in entire operational frequency range. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:713–723, 2016. 相似文献
7.
In this article, a hybrid microstrip fed dual‐cylindrical dielectric resonator antenna (dual‐CDRA) has been proposed for the sub‐6 GHz band application with a wide circular polarization band. The proposed hybrid microstrip feed cylindrical dielectric resonator antenna utilizes an S‐shaped microstrip feed line to excite fundamental HE11δ like mode and hybrid mode in dual‐CDRAs. The presented antenna structures are acting as monopole antenna separately with 48.75% (3.88‐6.38 GHz) bandwidth whereas both radiators called dual‐CDRAs enhances the bandwidth up to 93.06% (2.16‐5.92 GHz) in addition with an axial ratio bandwidth of 15.2% (3.52‐4.1 GHz). The proposed antenna is applicable for WiMAX (3.4‐3.69 GHz), and WLAN application of 802.11d and 8.02.11e IEEE standard. For validation of simulated results, an antenna prototype has been fabricated and experimentally verified. A good agreement between simulation and measured results are obtained. The simulation results have been carried out by using Ansys HFSS 14.0 version software. 相似文献
8.
Sreejith M. Nair V. A. Shameena C. M. Nijas C. K. Aanandan K. Vasudevan P. Mohanan 《国际射频与微波计算机辅助工程杂志》2012,22(5):581-587
A printed slot line fed dual‐band coplanar dipole antenna having a dimension of 0.40λg × 0.20λg suitable for both 2.4 and 5.2 GHz (IEEE 802.11 b/g and 802.11 a) WLAN application is presented. The structure comprises of a slot line fed symmetrical L strips to achieve dual‐band operation. Design equations of the antenna are developed and validated on different substrates. The simulation and experimental results show that the proposed antenna exhibits good impedance match, gain, and stable radiation patterns in both the frequency bands. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE , 2012. 相似文献
9.
In this article, a wideband circularly polarized rectangular dielectric resonator antenna (RDRA) with broadside radiation characteristics has been proposed. By using modified ground plane having an F‐shaped slot, the proposed structure able to generates three sets of modes i.e., fundamental as well as higher order modes. To obtained circular polarization, an orthogonal mode (TE113) in the RDRA has been generated by using the F‐shaped slot on the modified ground plane. The resonance frequency of fundamental mode (TE111) in the rectangular dielectric resonator (DR) has been calculated by using dielectric waveguide model method. The same has been confirmed through E‐field distribution in RDRA. Here, wide axial ratio (AR) bandwidth of the proposed antenna is due to the generation of and modes. It is observed that input impedance bandwidth has been broadening with a pair of excited modes ( and modes) in the proposed antenna structure. All these modes have been excited and merged to form a wide input impedance bandwidth and wide AR bandwidth of the designed antenna. The proposed antenna shows measured input reflection coefficient (S11 < ?10 dB) of 50.55% and measured AR bandwidth (AR < 3 dB) of 14.28%. The designed antenna shows left‐handed circular polarization in broadside direction and offering an average gain and radiation efficiency of 4.29 dBic and 92.22% respectively. 相似文献
10.
为增加火灾探测天线频带范围,基于微带贴片天线,采用凹槽加载技术,设计了中心频率在Ku(12.4~18.0 GHz)波段的双频微带单元天线.利用HFSS软件对其建模、仿真及优化,结果表明,该单元天线在14.8 GHz和16.1 GHz时回波损失达到最小值,且回波损失小于-10 dB的带宽分别为600MHz和390 MHz.利用该单元天线,进而设计了一款2×2阵列天线,实测结果表明:该阵列天线具有很好的双频谐振特性,在14.3~14.9 GHz和15.7 ~16.1 GHz频带内既保留了原单元天线好的回波损耗特性,又提高了增益,使两个频段最大增益分别达到13.7 dBi和11.3 dBi. 相似文献
11.
The main objective of the present article is to improve the bandwidth of a low profile Cylindrical Dielectric Resonator Antenna (CDRA) and operate it for WLAN and “C” band applications. An inverted umbrella shaped CDRA excited by a microstrip feedline with single stub is proposed here. Efficient coupling has been achieved by means of a single stub microstrip feed between DRA and the feed. The new shape of DRA and a single stub microstrip feed improves the bandwidth significantly as high as 28% from 5 to 6.67 GHz which is quite useful for both WLAN and “C” band applications. The proposed antenna is simple in construction, easy to fabricate, low profile and thickness of CDRA is only 5 mm. A parametric study is performed using Ansoft HFSS simulation software to optimize the antenna performance. The proposed CDRA is fabricated and the characteristics of the antenna are measured. 相似文献
12.
A dual‐band dual‐mode microstrip Yagi antenna with quasi‐end‐fire radiation patterns is proposed in this paper. It consists of five radiating patches driven by a single slot‐loaded patch placed in the middle. Meanwhile, two slot‐loaded parasitic patches are symmetrically located on two sides of the driven patch, respectively. In the lower band, the five patches involved resonate at TM01 mode. While in the upper band, all the patches resonate at TM02 mode. In order to ensure quasi‐end‐fire radiations in the both bands, four slots are symmetrically etched around the strongest surface currents of each patch resonating at TM02 mode. As a result, the resonant frequency of TM02 mode is decreased dramatically, while the resonant frequency of TM01 mode almost remains unchanged. With these arrangements, the separations between any two of the adjacent patches at their centers satisfy the requirements in design of the microstrip Yagi antenna in both bands, so as to realize the dual‐band dual‐mode microstrip Yagi antenna on a single‐layer substrate. Finally, an antenna prototype is fabricated and tested. The measured results reveal that the dual operating bands of 2.76~2.88 and 4.88~5.03 GHz for |S11| < ?10 dB are satisfactorily achieved. Most importantly, the proposed antenna can indeed realize the quasi‐end‐fire radiation patterns in dual operating bands. 相似文献
13.
This article presents a compact hybrid X‐band radiator, by combining the multiple resonances of two resonating and radiating structures, namely (a) a cylindrical dielectric resonator (CDR) and (b) a new type of slot geometry along with a U‐shaped microstrip feedline. Excitation of a few higher order modes in CDR structure is also observed and further investigated. The detailed performance analysis of the proposed geometry has been carried out both in frequency and time domains. Some design guidelines have been formulated which enable the design of the antenna for different bands. The proposed structure offers 46.3% (S11 ≤ ?10 dB and Voltage Standing Wave Ratio (VSWR) < 2) (measured) impedance bandwidth and about 4.5 dBi peak gain. The proposed antenna has the potential to be an ideal candidate for X‐band sensor applications. 相似文献
14.
In this article, a novel dual‐band circularly polarized (CP) dielectric resonator antenna (DRA) for millimeter‐wave (MMW) band is presented. The rectangular dielectric resonator with layered truncated corners is excited by a microstrip‐coupled cross‐slot. CP radiations in the lower band are realized by utilizing two quasi‐TE111 modes operating at 21.7 GHz and 23.8 GHz, while CP radiations in the upper band are obtained by exciting a quasi‐TE113 mode at 28.2 GHz. The dual‐band DRA is fabricated and measured. Due to the higher order mode, the average gain of the DRA in the upper band is about 3 dB higher than that in the lower band. The measured impedance bandwidths (|S11| < ?10 dB) are 17.0% (20.5‐24.3 GHz) and 15.2% (26.1‐30.4 GHz), while the measured axial ratio (AR) bandwidths (AR < 3 dB) are 12.8% (21.2‐24.1 GHz) and 5% (27.4‐28.8 GHz). In addition, the peak gain values are 5 and 8 dBic. 相似文献
15.
The objective of this article is to propose a miniaturized rectangular dielectric resonator antenna (RDRA) configuration and dual mode operation using a simple feeding scheme. It demonstrates the potential advantages achieved by choosing a microstrip line feeding mechanism at the edge of the RDRA. Measurement and simulation results are both in good agreement. The fabricated antenna possesses wide impedance bandwidth (BW) of 800 MHz (5.65 to 6.48 GHz) and dimensions of RDRA are 17 × 7 × 3 mm3. Measured radiation patterns have linear polarization over the frequency range. By the proposed design, the BW is enhanced more than four times as compared to the conventional way to excite the RDRA by microstrip line. To validate the design, the comparison of published design is discussed. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:229–235, 2015. 相似文献
16.
In this article, a hybrid two segments ring dielectric resonator antenna with partial ground plane, for ultrawideband application is described. The proposed antenna structure consists of annular shape microstrip line along with two ring dielectric resonators having different permittivity. By applying the combination of shifted annular shape microstrip line (used as a radiator as well as to convert TM01δ mode to TE01δ mode) and two segments ring dielectric resonator, ultra wide bandwidth has been achieved. Prototype of proposed structure has been fabricated and tested. Measured results show good agreement with the simulated ones. The proposed antenna structure operates over a frequency range of 3.45‐10.9 GHz with a fractional bandwidth of 103.83% and having better gain and radiation characteristics. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:47–53, 2016. 相似文献
17.
This paper presents a wideband circularly polarized broadside radiation characteristics by using stacked rectangular dielectric resonator antenna (DRA) with different volumes. In this designed antenna, the wide input impedance‐ and axial ratio (AR)‐bandwidths come from three factors: stacked rectangular DR with different volumes, stepped‐shaped conformal strip associated with microstrip line as a feed and different type of partial ground plane. Here, the orthogonal TExδ11 and TEy1δ1 modes have been responsible for the generation of CP radiation in stacked rectangular DRA. Measured results show that the proposed stacked rectangular DRA with different volumes achieves input impedance bandwidth of 54.84% while AR bandwidth has been found to be 11.53%. The proposed antenna provides broadside right‐handed CP radiation pattern with gain ranges from 2.27–5.80 dBic and offers an average radiation efficiency of 89.48%, across the entire working bandwidth, respectively. Therefore, this antenna is very much useful for the ISM 2400 band applications. 相似文献
18.
Qiang Chen Hou Zhang Lu‐chun Yang Hai‐peng Li Tao Zhong Xue‐liang Min Shi‐li Tan 《国际射频与微波计算机辅助工程杂志》2017,27(1)
A novel dual‐band, dual‐circularly polarized antenna is proposed and fabricated. The proposed antenna consists of an asymmetric U‐shaped slot and an inverted L‐shaped slot which are designed to excite two orthogonal E vectors with equal amplitude and 90° phase difference (PD), in addition, fed by a coplanar waveguide (CPW) Furthermore, a left‐hand circular polarization in the direction of z > 0 and a right‐hand circular polarization instead of the opposite direction both at the lower and upper bands are exhibited by the radiations of the antenna. Good agreement is achieved between the measurement and simulation, which indicates that a 10‐dB bandwidth of 38.75% from 2.56 to 3.8 GHz and 21.8% from 10.01 to 12.53 GHz, while a 3‐dB axial‐ratio bandwidth (ARBW) of 13.4% from 2.77 to 3.2 GHz and 9.23% from 10.25 to 11.25 GHz at two operation bands, respectively, are covered in the designed antenna. To explain the mechanism of dual‐band dual‐circular polarization, the analysis of magnetic fields distributions and a parametric study of the design are given. Meanwhile, compared to other recent works, a single layer structure, wider axial ratio and impedance bandwidths and a more compact size are the key features of the proposed antenna. 相似文献
19.
This letter investigates an integrated antenna configuration for WLAN/WiMAX applications. The proposed composite antenna configuration is simply the grouping of ring dielectric resonator along with reformed square‐shaped slot antenna. Three significant characteristics of proposed article are: (1) aperture act as magnetic dipole and excite HE11δ mode in ring dielectric resonator antenna; (2) reforming of square aperture generates orthogonal modes in ring DRA and creates CP in lower frequency band; (3) annular‐shaped Microstrip line along with reformed square aperture creates CP wave in upper frequency band. With the purpose of certifying the simulated outcomes, prototype of proposed structure is fabricated and tested. Good settlement is to be got between experimental and software generated outcome. Experimental outcomes show that the proposed radiating structure is operating over 2 frequency bands that is, 2.88‐3.72 and 5.4‐5.95 GHz. Measured 3‐dB axial ratio bandwidth in lower and upper frequency band is approximately 9.52% (3.0‐3.4 GHz) and 5.85% (5.64‐5.98 GHz), respectively. These outcomes indicate that the proposed composite antenna structure is appropriate for WLAN and WiMAX applications. 相似文献
20.
In this article, dual mode triple band hybrid cylindrical dielectric resonator antenna (CDRA) for different wireless applications is investigated. It is seen that annular ring shaped patch along with T‐shaped printed line behaves as a magnetic and electric dipole concurrently and create HE11δ and HE12δ mode in the proposed CDRA. Both of the hybrid modes radiate in broadside direction. The concept of hybrid antenna (the combination of annular ring patch and CDRA) is used to achieve triple‐band feature in the proposed antenna. Ansoft HFSS‐EM simulator is used to optimize the proposed antenna. Optimized simulated results have been practically confirmed by using the archetype of proposed antenna. The proposed radiator is applicable in three different frequency bands, that is, 2.24‐2.56 GHz, 3.28‐4.18 GHz, and 5.36‐5.8 GHz. It is appropriate for WLAN (2.4/5.8 GHz) and WiMAX (2.5/3.3/5.5 GHz) applications. 相似文献