首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the H observer design problem for a class of nonlinear discrete‐time singular systems with time‐varying delays and disturbance inputs. The nonlinear systems can be rectangular and the nonlinearities satisfy the one‐sided Lipschitz condition and quadratically inner‐bounded condition, which are more general than the traditional Lipschitz condition. By appropriately dealing with these two conditions and applying several important inequalities, a linear matrix inequality–based approach for the nonlinear observer design is proposed. The resulting nonlinear H observer guarantees asymptotic stability of the estimation error dynamics with a prescribed performance γ. The synthesis condition of H observer design for nonlinear discrete‐time singular systems without time delays is also presented. The design is first addressed for one‐sided Lipschitz discrete‐time singular systems. Finally, two numerical examples are given to show the effectiveness of the present approach.  相似文献   

2.
This paper proposes an integrated fault estimation and fault‐tolerant control (FTC) design for Lipschitz non‐linear systems subject to uncertainty, disturbance, and actuator/sensor faults. A non‐linear unknown input observer without rank requirement is developed to estimate the system state and fault simultaneously, and based on these estimates an adaptive sliding mode FTC system is constructed. The observer and controller gains are obtained together via H optimization with a single‐step linear matrix inequality (LMI) formulation so as to achieve overall optimal FTC system design. A single‐link manipulator example is given to illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a new approach for the design of robust H sliding mode observer (SMO) for a class of Lipschitz nonlinear systems where both faults and uncertainties are considered. A sufficient condition using linear matrix inequality (LMI) optimization is derived to guarantee the asymptotically stability of the estimation error dynamics and compute the observer gains. A fault estimation scheme is presented where the estimation signal can approximate the fault to some degree of accuracy. Our design approach has some advantages. The Lipschitz constant of the nonlinear term in the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. For this reason, the Lipschitz constant is suitable to a large class of uncertain nonlinear systems. Moreover, the fault estimation is much more robust against disturbances and nonlinear uncertainty and can preserve the fault signal shape effectively. Finally, a simulation study on a robotic arm system is presented to show the effectiveness of this approach.  相似文献   

4.
This paper is concerned with the robust adaptive fault‐tolerant compensation control problem via sliding‐mode output feedback for uncertain linear systems with actuator faults and exogenous disturbances. Mismatched disturbance attenuation is performed via H norm minimization. By incorporating the matrix full‐rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under the assumption that redundancy is available in the system. Without the need for a fault detection and isolation mechanism, an adaptive sliding mode controller, where the gain of the nonlinear unit vector term is updated automatically to compensate the effects of actuator faults, is designed to guarantee the asymptotic stability and adaptive H performance of closed‐loop systems. The effectiveness of the proposed design method is illustrated via a B747‐100/200 aircraft model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a scheme to design robust sliding mode observers(SMO) with ?? performance for uncertain nonlinear Lipschitz systems where both faults and disturbances are considered. We study the necessary conditions to achieve insensitivity of the proposed sliding mode observer to the unknown input(fault). The objective is to derive a sufficient condition using linear matrix inequality(LMI) optimization for minimizing the ?? gain between the estimation error and disturbances, while at the same time the design method guarantees that the solution of the LMI optimization satisfies the so‐called structural matching condition. The sliding motion affects only a part of the system through a novel reduced‐order sliding mode controller. Furthermore, the so‐called equivalent control concept is discussed for fault estimation. Finally, a numerical example of MCK chaos demonstrates the high performance of the results compared with a pure SMO. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper considers the problem of delay‐dependent adaptive reliable H controller design against actuator faults for linear time‐varying delay systems. Based on the online estimation of eventual faults, the parameters of adaptive reliable H controller are updating automatically to compensate the fault effects on the system. A new delay‐dependent reliable H controller is established using a linear matrix inequality technique and an adaptive method, which guarantees the stability and adaptive H performance of closed‐loop systems in normal and faulty cases. A numerical example and its simulation results illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This paper considers H?/L fault detection for discrete‐time linear parameter‐varying (LPV) systems with parametric uncertainty. In H?/L fault detection scheme, residual generation and threshold computation are simultaneously designed. With consideration of H?/L performance indices, the generated residual is sensitive to faults while robust against unknown disturbances. Furthermore, the L performance provides a time‐varying threshold for residual evaluation. This paper proposes a novel H?/L fault detection observer design method to handle actuator fault detection for LPV systems with parametric uncertainty. Sufficient conditions of the fault detection observer design in the finite‐frequency domain are derived as linear matrix inequalities. Numerical simulations are used to illustrate the effectiveness and superiority of the proposed fault detection observer design approach.  相似文献   

8.
In this article, the elegant antidisturbance fault‐tolerant control (EADFTC) problem is studied for a class of stochastic systems in the simultaneous presence of multiple heterogeneous disturbances and time‐varying faults. The multiple heterogeneous disturbances include white noise, norm bounded uncertain disturbances and uncertain modeled disturbances with multiple nonlinearities and unknown amplitudes, frequencies, and phases. The time‐varying fault signals are caused by lose efficacy of actuator. To online estimate uncertain modeled disturbances and time‐varying faults, a novel composite observer structure consisting of the adaptive nonlinear disturbance observer and the fault diagnosis observer is constructed. The novel EADFTC strategy is proposed by integrating composite observer structure with adaptive disturbance observer‐based control theory and H technology. It is proved that all the signals of closed‐loop system are asymptotically bounded in mean square under the circumstances of multiple heterogeneous disturbances and time‐varying faults occur simultaneously. Finally, the effectiveness and availability of proposed strategy are demonstrated by means of the numerical simulation and a doubly fed induction generators system simulation, respectively.  相似文献   

9.
10.
This paper investigates the problem of distributed reliable H consensus control for high‐order networked agent systems with actuator faults and switching undirected topologies. The Lipschitz nonlinearities, several types of actuator faults, and exogenous disturbances are considered in subsystems. Suppose the communication network of the multi‐agent systems may switch among finite connected graphs. By utilizing the relative state information of neighbors, a new distributed adaptive reliable consensus protocol is presented for actuator failure compensations in individual nodes. Note that the Lyapunov function for error systems may not decrease as the communication network is time‐varying; as a result, the existing distributed adaptive control technique cannot be applied directly. To overcome this difficulty, the topology‐based average dwell time approach is introduced to deal with switching jumps. By applying topology‐based average dwell time approach and Lyapunov theory, the distributed controller design condition is given in terms of LMIs. It is shown that the proposed scheme can guarantee that the reliable H consensus problem is solvable in the presence actuator faults and external disturbance. Finally, two numerical examples are given the effectiveness of the proposed theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, the problem of sensor fault estimation observer design for Lipschitz nonlinear systems with finite-frequency specifications is investigated. First, the sensor fault is considered as an auxiliary state vector and an augmented system is established. Then, by transforming the nonlinear error dynamics into a linear parameter varying system, a sufficient condition for the observer-error system with a finite-frequency H performance is derived in terms of linear matrix inequalities (LMIs). Based on the obtained condition, novel nonlinear observers are designed to simultaneously estimate the system states and the fault signals and attenuate the disturbances in the finite-frequency domain. The proposed design method can provide less restrictive LMI conditions and get a better disturbance-attenuation performance when the frequency ranges of disturbances are known beforehand. A numerical example is given to show the effectiveness and superiority of the new results.  相似文献   

12.
The extended H filter (EHF) is a conservative solution with infinite‐horizon robustness for the state estimation problem regarding nonlinear systems with stochastic uncertainties, which leads to excessive costs in terms of filtering optimality and reduces the estimation precision, particularly when uncertainties related to external disturbances and noise appear intermittently. In order to restore the filtering optimality lost due to the conservativeness of the EHF design, we developed an optimal‐switched (OS) filtering mechanism based on the standard EHF to obtain an optimal‐switched extended H filter (OS‐EHF). The OS mechanism has an error‐tolerant switched (ETS) structure, which switches the filtering mode between optimal and H robust by setting a switching threshold with redundancy to uncertainties, and a robustness‐optimality cost function (ROCF) is introduced to determine the threshold and optimize the ETS structure online. The ROCF is the weighted sum of the quantified filtering robustness and optimality. When a weight is given, the proposed OS‐EHF can obtain the optimal state estimates while maintaining the filtering robustness at an invariant ratio. A simulation example of space target tracking has demonstrated the superior estimation performance of the OS‐EHF compared with some other typical filters, thereby verifying the effectiveness of using the weight to evaluate the estimation result of the filters.  相似文献   

13.
In this paper, the issue of the finite‐horizon H fault estimation is dealt with for a class of discrete time‐varying systems subject to randomly occurring faults and multiple fading measurements. The missing phenomena may occur in a random way from different sensors, which is represented by an individual stochastic variable meeting a certain probability distribution. Furthermore, in order to alleviate the communication burden, the torus‐event–based protocols are adopted to schedule the data transmissions only when some significant events occur. Our aim of the presented issue is to estimate the fault such that, with multiple fading measurements via the received information governed by torus‐event–based protocols, the H index is satisfied over a given finite horizon. Sufficient conditions are obtained for the desired time‐varying estimator in terms of the technique of stochastic analysis and the methods of completing squares. The desired estimator gains are calculated by working out two backward recursive Riccati difference equations. Finally, a numerical simulation is given to verify the usefulness of our designed fault estimation approach.  相似文献   

14.
The current article discusses the H disturbance attenuation control design problem for one‐sided Lipschitz systems in finite frequency domain. Models containing norm‐bounded parameter uncertainties, disturbances, and input nonlinearities are considered. By contrast to existing full frequency methods, the H controller is computed depending on the frequency ranges of disturbances. The finite frequency disturbance attenuation index is initially defined. Thanks to Finsler's lemma, sufficient and less conservative analysis conditions are also derived for the closed‐loop system. Then, synthesis conditions in the low, middle, and high frequency ranges as well as the whole frequency range, are formulated in terms of linear matrix inequalities. At last, to prove the effectiveness and the superiority of the proposed approach, a physical example is used and a comparative study is done.  相似文献   

15.
A novel type of control scheme combined the distance‐observer‐based control (DOBC) with H control is proposed for a class of nonlinear time‐delay systems subject to disturbances. The disturbances are supposed to include two parts. One in the input channel is generated by an exogenous system with uncertainty, which can represent the harmonic signals with modeling perturbations. The other is supposed to have the bounded H2 norm. The disturbance observers based on regional pole placement and D‐stability theory are presented, which can be designed separately from the controller design. By integrating disturbance‐observer‐based control with H control laws, the disturbances can be rejected and attenuated, simultaneously, the desired dynamic performances can be guaranteed for nonlinear time‐delay systems with unknown nonlinear dynamics. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

16.
This paper investigates the problem of robust filtering for a class of uncertain nonlinear discrete‐time systems with multiple state delays. It is assumed that the parameter uncertainties appearing in all the system matrices reside in a polytope, and that the nonlinearities entering into both the state and measurement equations satisfy global Lipschitz conditions. Attention is focused on the design of robust full‐order and reduced‐order filters guaranteeing a prescribed noise attenuation level in an H∞ or l2l∞ sense with respect to all energy‐bounded noise disturbances for all admissible uncertainties and time delays. Both delay‐dependent and independent approaches are developed by using linear matrix inequality (LMI) techniques, which are applicable to systems either with or without a priori information on the size of delays.  相似文献   

17.
A new approach for the design of robust H observers for a class of Lipschitz nonlinear systems with time‐varying uncertainties is proposed based on linear matrix inequalities (LMIs). The admissible Lipschitz constant of the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. The resulting H observer guarantees asymptotic stability of the estimation error dynamics and is robust against nonlinear additive uncertainty and time‐varying parametric uncertainties. Explicit norm‐wise and element‐wise bounds on the tolerable nonlinear uncertainty are derived. Also, a new method for the robust output feedback stabilization with H performance for a class of uncertain nonlinear systems is proposed. Our solution is based on a noniterative LMI optimization and is less restrictive than the existing solutions. The bounds on the nonlinear uncertainty and multiobjective optimization obtained for the observer are also applicable to the proposed static output feedback stabilizing controller. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A novel type of control scheme combining the disturbance‐observer‐based control (DOBC) with H control is proposed for a class of complex continuous models with disturbances. The disturbances are supposed to include two parts. One part in the input channel is generated by an exogenous system with uncertainty, which can represent the harmonic signals with modeling perturbations. The other part is supposed to have the bounded H2‐norm. Parametric uncertainties exist both in concerned plant and in exogenous subsystem. The disturbance observers based on regional pole placement and D‐stability theory are designed and integrated with conventional H control laws. The new composite DOBC and H control scheme is applied to complex continuous models for the case with known and unknown nonlinearity, respectively. Then the first type of disturbances can be estimated and rejected, and the second type can be attenuated; simultaneously, the desired dynamic performances can be guaranteed. Simulations for a flight control system are given to demonstrate the effectiveness of the results and compare the proposed results with the previous schemes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we analyze the finite‐horizon fault estimation issue for a kind of time‐varying nonlinear systems with imperfect measurement signals under the stochastic communication protocol (SCP). The imperfect measurements result from randomly occurring sensor nonlinearities obeying sensor‐wise Bernoulli distributions. The Markov‐chain‐driven SCP is introduced to regulate the signal transmission to alleviate the communication congestion. The aim of the considered issue is to propose the design algorithm of a group of time‐varying fault estimators such that the estimation error dynamics satisfies both the H and the finite‐time boundedness (FTB) performance requirements. First, sufficient conditions are set up to guarantee the existence of the satisfactory H FTB fault estimators through intensive stochastic analyses and matrix operations. Then, the gains of such fault estimators are explicitly parameterized by resorting to the solution to recursive linear matrix inequalities. Finally, the correctness of the devised fault estimation approach is demonstrated by a numerical example.  相似文献   

20.
In this article, we address the problem of output stabilization for a class of nonlinear time‐delay systems. First, an observer is designed for estimating the state of nonlinear time‐delay systems by means of quasi‐one‐sided Lipschitz condition, which is less conservative than the one‐sided Lipschitz condition. Then, a state feedback controller is designed to stabilize the nonlinear systems in terms of weak quasi‐one‐sided Lipschitz condition. Furthermore, it is shown that the separation principle holds for stabilization of the systems based on the observer‐based controller. Under the quasi‐one‐sided Lipschitz condition, state observer and feedback controller can be designed separately even though the parameter (A,C) of nonlinear time‐delay systems is not detectable and parameter (A,B) is not stabilizable. Finally, a numerical example is provided to verify the efficiency of the main results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号