首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the boundary control problem for linear stochastic reaction‐diffusion systems with Neumann boundary conditions. First, when the full‐domain system states are accessible, a boundary control is designed, and a sufficient condition is established to ensure the mean‐square exponential stability of the resulting closed‐loop system. Next, when the full‐domain system states are not available, an observer‐based control is proposed such that the underlying closed‐loop system is stable. Furthermore, observer‐based controller is designed for the systems with an H performance. Simulation examples are given to demonstrate the effectiveness and potential of the new design techniques.  相似文献   

2.
This paper is concerned with the problem of robust H control for uncertain stochastic systems with Markovian jump parameters and time‐varying state delays. A linear matrix inequality approach is developed and state feedback controllers are designed, which guarantee mean square asymptotic stability of the closed‐loop system and a prescribed H performance level for all modes and admissible uncertainties. A numerical example is provided to demonstrate the application of the proposed method.  相似文献   

3.
In this paper, the H control problem is investigated for a general class of discrete‐time nonlinear stochastic systems with state‐, control‐, and disturbance‐dependent noises (also called (x, u, v)‐dependent noises). In the system under study, the system state, the control input, and the disturbance input are all coupled with white noises, and this gives rise to considerable difficulties in the stability and H performance analysis. By using the inequality techniques, a sufficient condition is established for the existence of the desired controller such that the closed‐loop system is mean‐square asymptotically stable and also satisfies H performance constraint for all nonzero exogenous disturbances under the zero‐initial condition. The completing square technique is used to design the H controller with hope to reduce the resulting conservatism, and a special algebraic identity is employed to deal with the cross‐terms induced by (x, u, v)‐dependent noises. Several corollaries with simplified conditions are presented to facilitate the controller design. The effectiveness of the developed methods is demonstrated by two numerical examples with one concerning the multiplier‐accelerator macroeconomic system.  相似文献   

4.
This paper deals with the problem of network‐based H control for a class of uncertain stochastic systems with both network‐induced delays and packet dropouts. The networked control system under consideration is represented by a stochastic model, which consists of two successive delay components in the state. The uncertainties are assumed to be time varying and norm bounded. Sufficient conditions for the existence of H controller are proposed to ensure exponentially stable in mean square of the closed‐loop system that also satisfies a prescribed performance. The conditions are expressed in the frame of linear matrix inequalities (LMIs), which can be verified easily by means of standard software. Two practical examples are provided to show the effectiveness of the proposed techniques. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The problem of quantized H control for networked control systems (NCSs) subject to time‐varying delay and multiple packet dropouts is investigated in this paper. Both the control input and the measurement output signals are quantized before being transmitted and the quantized errors are described as sector bound uncertainties. The measurement channel and the control channel packet dropouts are considered simultaneously, and the stochastic variables satisfying Bernoulli random binary distribution are utilized to model the random multiple packet dropouts. Sufficient conditions for the existence of an observer‐based controller are established to ensure the exponential mean‐square stablility of the closed‐loop system and achieve the optimal H disturbance attenuation level. By using a globally convergent algorithm involving convex optimization, the nonconvex feasibility can be solved successfully. Finally, a numerical example is given to illustrate the effectiveness and applicability of the proposed method.  相似文献   

6.
This paper investigates the robust H control problem for stochastic systems with a delay in the state. Sufficient delay‐dependent conditions for the existence of state‐feedback controllers are proposed to guarantee mean‐square asymptotic stability as well as the prescribed H performance for the closed‐loop systems. Moreover, the results are further extended to the stochastic time‐delay systems with parameter uncertainties, which are assumed to be time‐varying norm‐bounded appearing in both the state and the input matrices. The appealing idea is to partition the delay, which differs greatly from the most existing results and reduces conservatism by thinning the delay partitioning. Numerical examples are provided to show the advantages of the proposed techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with the problem of H fuzzy controller synthesis for a class of discrete‐time nonlinear active fault‐tolerant control systems (AFTCSs) in a stochastic setting. The Takagi and Sugeno (T–S) fuzzy model is employed to exactly represent a nonlinear AFTCS. For this AFTCS, two random processes with Markovian transition characteristics are introduced to model the failure process of system components and the fault detection and isolation (FDI) decision process used to reconfigure the control law, respectively. The random behavior of the FDI process is conditioned on the state of the failure process. A non‐parallel distributed compensation (non‐PDC) scheme is adopted for the design of the fault‐tolerant control laws. The resulting closed‐loop fuzzy system is the one with two Markovian jump parameters. Based on a stochastic fuzzy Lyapunov function (FLF), sufficient conditions for the stochastic stability and H disturbance attenuation of the closed‐loop fuzzy system are first derived. A linear matrix inequality (LMI) approach to the fuzzy control design is then developed. Moreover, a suboptimal fault‐tolerant H fuzzy controller is given in the sense of minimizing the level of disturbance attenuation. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the H control problem for networked control systems (NCSs) with random packet dropouts. The NCS is modeled as a sampled‐data system which involves a continuous plant, a digital controller, an event‐driven holder and network channels. In this model, two types of packet dropouts in the sensor‐to‐controller (S/C) side and controller‐to‐actuator (C/A) side are both considered, and are described by two mutually independent stochastic variables satisfying the Bernoulli binary distribution. By applying an input/output delay approach, the sampled‐data NCS is transformed into a continuous time‐delay system with stochastic parameters. An observer‐based control scheme is designed such that the closed‐loop NCS is stochastically exponentially mean‐square stable and the prescribed H disturbance attenuation level is also achieved. The controller design problem is transformed into a feasibility problem for a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed design method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
In this paper, we study a polynomial static output feedback (SOF) stabilization problem with H performance via a homogeneous polynomial Lyapunov function (HPLF). It is shown that the quadratic stability ascertaining the existence of a single constant Lyapunov function becomes a special case. With the HPLF, the proposal is based on a relaxed two‐step sum of square (SOS) construction where a stabilizing polynomial state feedback gain K(x) is returned at the first stage and then the obtained K(x) gain is fed back to the second stage, achieving the SOF closed‐loop stabilization of the underlying polynomial fuzzy control systems. The SOS equations obtained thus effectively serve as a sufficient condition for synthesizing the SOF controllers that guarantee polynomial fuzzy systems stabilization. To demonstrate the effectiveness of the proposed polynomial fuzzy SOF H control, benchmark examples are provided for the new approach.  相似文献   

10.
This paper addresses the problem of designing robust tracking control for a large class of uncertain robotic systems. A more general model of the external disturbance is employed in the sense that the external disturbance can be expressed as the sum of a modeled disturbance and an unmodeled disturbance, for example, any periodic disturbance can be expressed in this general form. An adaptive neural network system is constructed to approximate the behavior of unknown robot dynamics. An adaptive control algorithm is designed to estimate the behavior of the modeled disturbance, and in turn the robust H control algorithm is required to attenuate the effects of the unmodeled disturbance only. Consequently, an intelligent adaptive/robust tracking control scheme is constructed such that an H tracking control is achieved in the sense that all the states and signals of the closed‐loop system are bounded and the effect due to the unmodeled disturbance on the tracking error can be attenuated to any preassigned level. Finally, simulations are provided to demonstrate the effectiveness and performance of the proposed control algorithm.  相似文献   

11.
Does the replacement of the quadratic (H2) predictor by the worst‐case (H, or cumulative minimax) predictor robustify the predictive control laws? The present work provides a partial answer to this question, positive for the examples considered, representative of three broad classes of systems. The H prediction is demonstrated to be a powerful and convenient tool for frequency shaping of the gain of the closed‐loop complementary sensitivity function, capable of robustifying the closed loop for systems with different stability properties. The H‐optimal k‐step ahead predictor is derived for an unstable single‐input–single‐ output CARMA model. A BIBO unstable filter for the disturbance rejection is obtained using the internal model principle and included into the closed loop, and the H predictor is applied to the combination of this filter with the plant. The sum over a finite horizon of the current and the predicted tracking error and control signal power spectral densities (PSDs) is decomposed into two parts, one induced by the worst‐case predicted disturbance and the other—by the known future reference input. A two degrees of freedom algorithm, referred to as the multi‐step closed‐loop polynomial H predictive control law, is obtained that minimizes the peaks of the PSD of the first part and the integral on the unit circle of the PSD of the second. It is demonstrated on several systems that H prediction introduces a very intuitive tuning knob in the form of the prediction horizon capable of setting a trade‐off between the steady‐state disturbance rejection perfor mance in terms of the output error variance and the closed‐loop robustness, however the efficacy of the knob strongly depends on the stability properties of the system and its inverse. The trade‐off becomes less pronounced or completely disappears when the H predictor is replaced by the quadratic one. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This paper is focused on the problem of adaptive sliding mode control design for uncertain neutral‐type stochastic systems under a prescribed H performance. A simplified state observer is put forward to estimate the unknown state variables, which could be properly incorporated for establishing a new linear‐type switching surface and the associated adaptive variable structure controller. By virtue of the adaptive control design, unknown matched perturbation and potential uncertainties can be counteracted, and the system trajectories are guaranteed to reach the predefined switching surface within finite moment in almost surely sense, and performance analysis of the closed‐loop dynamics during the sliding surface is carried out with a specified H performance. At last, two illustrative examples through computer simulations are provided to verify the effectiveness and applicability of the proposed scheme.  相似文献   

13.
This paper investigates the problem of delay‐dependent robust stochastic stabilization and H control for uncertain stochastic nonlinear systems with time‐varying delay. System uncertainties are assumed to be norm bounded. Firstly, by using novel method to deal with the integral terms, robustly stochastic stabilization results are obtained for stochastic uncertain systems with nonlinear perturbation, and an appropriate memoryless state feedback controller can be chosen. Compared with previous results, the new technique can sufficiently utilize more negative items information. Then, robust H control for uncertain stochastic system with time‐varying delay and nonlinear perturbation is considered, and the controller is designed, which will guarantee that closed‐loop system is robustly stochastically stable with disturbance attenuation level. Finally, two numerical examples are listed to illustrate that our results are effective and less conservative than other reports in previous literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with the problems of robust stochastic stabilization and robust H control for uncertain discrete‐time stochastic bilinear systems with Markovian switching. The parameter uncertainties are time‐varying norm‐bounded. For the robust stochastic stabilization problem, the purpose is the design of a state feedback controller which ensures the robust stochastic stability of the closed‐loop system irrespective of all admissible parameter uncertainties; while for the robust H control problem, in addition to the robust stochastic stability requirement, a prescribed level of disturbance attenuation is required to be achieved. Sufficient conditions for the solvability of these problems are obtained in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, explicit expressions of the desired state feedback controllers are also given. An illustrative example is provided to show the effectiveness of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a robust H control problem is considered for an uncertain singular system. An active disturbance rejection method called equivalent input disturbance (EID) is used to reduce the influence of exogenous disturbances and uncertainties on the system. At the first, there exists an EID, which can produces the same effect on the system as disturbances and uncertainties do in the control channel according to the EID concept. Then, an EID estimator is constructed to estimate the influence of EID on the system. Finally, based on Lyapunov stability theory, a static output feedback‐based robust H controller combined with EID estimate is designed, guaranteeing that closed‐loop system is admissible (regular, impulse‐free, and stable) with a prescribed H performance level. Compared with traditional H control method, H control based on EID method improve the control performance of the system. A numerical example demonstrates the validity of the method.  相似文献   

16.
This paper is concerned with the problem of robust H control for a class of uncertain nonlinear Itô‐type stochastic systems with mixed time delays. The parameter uncertainties are assumed to be norm bounded, the mixed time delays comprise both the discrete and distributed delays, and the sector nonlinearities appear in both the system states and delayed states. The problem addressed is the design of a linear state feedback controller such that, in the simultaneous presence of parameter uncertainties, system nonlinearities and mixed time delays, the resulting closed‐loop system is asymptotically stable in the mean square and also achieves a prescribed H disturbance rejection attenuation level. By using the Lyapunov stability theory and the Itô differential rule, some new techniques are developed to derive the sufficient conditions guaranteeing the existence of the desired feedback controllers. A unified linear matrix inequality is proposed to deal with the problem under consideration and a numerical example is exploited to show the usefulness of the results obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper we study the possible optimality of biochemical pathways in the H sense. We start by presenting simple linearized models of single enzymatic reaction systems, where we apply classical and modern tools of feedback‐control theory. We then apply the results obtained by our analysis to a linearly unbranched enzyme pathway system, where we explore the effect of a negative feedback loop internally exerted on the system by a self‐product of the pathway. We then probe the sensitivity of the enzymatic system to variations in certain variables and we deal with the problem of assessing the optimality of the static‐output feedback control, in the H sense, inherent to the closed‐loop system. In this point we demonstrate the applicability of our results via a theoretical example that provides an open‐loop and closed‐loop analysis of a four‐block enzymatic system. We then apply the various tools we developed to the optimal analysis of the Threonine synthesis pathway which is regulated by three feedback loops. We demonstrate that this pathway is optimal in the H sense, in the face of considerable uncertainties in the various enzyme concentrations of the pathway. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
An H‐type control is considered for mean‐field stochastic differential equations (SDEs) in this paper. A stochastic bounded real lemma (SBRL) is proved for mean‐field stochastic continuous‐time systems with state‐ and disturbance‐dependent noise. Based on SBRL, a sufficient condition is given for the existence of a stabilizing H controller in terms of coupled nonlinear matrix inequalities.  相似文献   

19.
This paper deals with the problem of robust H control for a class of discrete‐time Markovian jump systems subject to both actuator saturation and incomplete knowledge of transition probability. Different from the previous results where the transition probability is completely known, a more general situation where only partial information on the exact values of elements in transition probability matrix is considered. By introducing some free parameters to express the relationship for the known and the unknown elements of transition probability matrix in stability analysis, a criterion is established to guarantee the stochastic stability of the closed‐loop system as well as an H performance index. The concept of domain of attraction in mean square sense is used to analyze the closed‐loop stability, and the mode‐dependent H state‐feedback controller is designed. It is shown that, even in the absence of actuator saturation, the obtained result is less conservative than the existing one. A numerical example is provided to illustrate the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this article, the elegant antidisturbance fault‐tolerant control (EADFTC) problem is studied for a class of stochastic systems in the simultaneous presence of multiple heterogeneous disturbances and time‐varying faults. The multiple heterogeneous disturbances include white noise, norm bounded uncertain disturbances and uncertain modeled disturbances with multiple nonlinearities and unknown amplitudes, frequencies, and phases. The time‐varying fault signals are caused by lose efficacy of actuator. To online estimate uncertain modeled disturbances and time‐varying faults, a novel composite observer structure consisting of the adaptive nonlinear disturbance observer and the fault diagnosis observer is constructed. The novel EADFTC strategy is proposed by integrating composite observer structure with adaptive disturbance observer‐based control theory and H technology. It is proved that all the signals of closed‐loop system are asymptotically bounded in mean square under the circumstances of multiple heterogeneous disturbances and time‐varying faults occur simultaneously. Finally, the effectiveness and availability of proposed strategy are demonstrated by means of the numerical simulation and a doubly fed induction generators system simulation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号