首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This article addresses the leaderless fixed‐time consensus (LLFTC) and leader‐following fixed‐time consensus (LFFTC) problems for multiagent systems (MASs) via impulsive control. First, a novel fixed‐time stability for impulsive dynamical system is developed. Then the novel fixed‐time impulsive control protocols are designed to achieve leaderless and leader‐following consensus for MASs. Based on the impulsive control theory, fixed‐time stability theory and algebraic graph theory, some sufficient conditions are derived for each agent to achieve LLFTC and LFFTC under the proposed control protocols. Finally, numerical simulations are put forward to validate the theoretical results.  相似文献   

2.
    
The finite‐time formation control for multiple nonholonomic wheeled mobile robots with a leader‐following structure is studied. Different from the existing results, the considered mobile robot has the following features: (i) a higher‐order dynamic model, (ii) the robot's velocities cannot be measured, and (iii) there are external disturbances. To solve the problem, a finite‐time consensus formation control algorithm via output feedback is explicitly given. At the first step, some finite‐time convergent observers are skillfully constructed to estimate both the unknown velocity information and the disturbance in finite time by imposing certain assumptions on the disturbances. Then, on the basis of the integral sliding‐mode control method, a disturbance observer‐based finite‐time output feedback controller is developed. Rigorous proof shows that the finite‐time formation can be achieved in finite time. An example is finally given to verify the efficiency of the proposed method.  相似文献   

3.
    
This paper addresses the robust consensus problem under switching topologies. Contrary to existing methods, the proposed approach provides decentralized protocols that achieve consensus for networked multiagent systems in a predefined time. Namely, the protocol design provides a tuning parameter that allows setting the convergence time of the agents to a consensus state. An appropriate Lyapunov analysis exposes the capability of the current proposal to achieve predefined‐time consensus over switching topologies despite the presence of bounded perturbations. Finally, this paper presents a comparison showing that the suggested approach subsumes existing fixed‐time consensus algorithms, which allows to provide extra degrees of freedom to obtain predefined‐time consensus protocols with improved convergence characteristics, for instance, to reduce the slack between the true convergence time and the predefined upper bound. Numerical results are given to illustrate the effectiveness and advantages of the proposed method.  相似文献   

4.
    
The distributed output‐feedback tracking control for a class of networked multiagents in nonaffine pure‐feedback form is investigated in this article. By introducing a low‐pass filter and some auxiliary variables, we first transform the nonaffine system into the affine form. Then, the finite‐time observer is designed to estimate the states of the newly derived affine system. By applying the fraction dynamic surface control approach and the neural network‐based approximation technique, the distributed output‐feedback control laws are proposed and it is proved that the tracking errors converge to an arbitrarily small bound around zero in finite time. Finally, some simulation examples are provided to confirm the effectiveness of the developed method.  相似文献   

5.
    
This paper investigates the consensus problem for high‐order multiagent systems with unknown control directions and directed communication constraints. To handle the problem of unknown control directions, a logic switching rule is established in the framework of fixed‐time stability. Then, the consensus is achieved in two steps. A group of distributed fixed‐time observers is designed to estimate the reference signals first. Based on these estimates and the designed logic switching rule, a novel control protocol is proposed for each follower system. Different from the existing results, the consensus is achieved with a fixed‐time convergence rate, and the unknown control directions are allowed to be nonidentical for each agent. Finally, simulation results are given to exhibit the validity of the proposed method.  相似文献   

6.
    
In this article, the problem of event‐triggered‐based fixed‐time sliding mode cooperative control is addressed for a class of leader‐follower multiagent networks with bounded perturbation. First, a terminal integral sliding mode manifold with fast convergent speed is designed. Then, a distributed consensus tracking control strategy based on event‐triggered and sliding mode control is developed that guarantees the multiagent networks achieve consensus within a fixed time which is independent of initial states of agents in comparison with the finite‐time convergence. Furthermore, the update frequency of control law can be considerably reduced and Zeno behavior can be removed by utilizing the proposed event‐triggered control algorithm. Simulation examples are used to show the effectiveness of the new control protocol.  相似文献   

7.
    
The robust leader-following consensus of heterogeneous multiagent systems under switching communication topologies is investigated in this paper. Especially, the input delay is considered in each follower. In order to access the information of leader through time-varying communication, a type of distributed dynamic compensator is proposed for every follower firstly, which get rid of the dependence on the global spectrum information and is proved that it can be viewed as a asymptotic observer of the leader. Then combined with the internal model principle, two types of distributed control law are proposed based on the compensator. By applying the truncated predictor feedback scheme to synthesize the closed-loop systems, it is proved that the consensus can be achieved by both of the control laws despite the existence of the input delay and the plant parameters perturbations. Finally, numerical simulations are illustrated to demonstrate the results.  相似文献   

8.
    
This paper focuses on the distributed event‐triggered fixed‐time consensus control problem of leader‐follower multiagent systems with nonlinear dynamics and uncertain disturbances. Two distributed fixed‐time consensus protocols are proposed based on distributed event‐triggered strategies, which can substantially reduce energy consumption and the frequency of the controller updates. It is proved that under the proposed distributed event‐triggered consensus tracking control strategies, the Zeno behavior is avoided. Compared with the finite‐time consensus tracking, the fixed‐time consensus tracking can be achieved within a settling time regardless of the initial conditions. Finally, 2 examples are performed to validate the effectiveness of the distributed event‐triggered fixed‐time consensus tracking controllers.  相似文献   

9.
    
The problem of group consensus is investigated in this paper, where all agents possess double‐integrator dynamics. Two different kinds of consensus protocols are proposed for networks with fixed communication topology to reach group consensus for the agents’ positions and velocities. Convergence analysis is discussed, and necessary and/or sufficient conditions are presented for multiagent systems to achieve group consensus. The first protocol leads to dynamic consensus where positions of all agents reach time‐varying consensus values. By applying the second protocol, both the agents’ positions and their velocities reach constant consensus values. That is, static consensus is achieved. Simulation examples are given to show the effectiveness of the theoretical results.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
    
Even though many consensus protocol algorithms have been developed over the last several years in the literature, robustness properties of these algorithms involving nonlinear dynamics have been largely ignored. Robustness here refers to sensitivity of the control algorithm achieving semistability and consensus in the face of model uncertainty. In this paper, we examine the robustness of several control algorithms for network consensus protocols with information model uncertainty of a specified structure. In particular, we develop sufficient conditions for robust stability of control protocol functions involving higher‐order perturbation terms that scale in a consistent fashion with respect to a scaling operation on an underlying space with the additional property that the protocol functions can be written as a sum of functions, each homogeneous with respect to a fixed scaling operation, that retain system semistability and consensus. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
    
This study investigates the fully distributed bipartite output consensus issue of heterogeneous linear multiagent systems (HLMASs) based on event‐triggered transmission mechanism. Both the cooperative interaction and the antagonistic interaction between neighbor agents are considered. A fully distributed bipartite compensator consisting of time‐varying coupling gain and dynamic event‐triggered mechanism is first proposed to estimate the leader's states. Different from the existing schemes, the proposed compensator is independent of any global information of the network topology, is capable of achieving intermittent communication between neighbors, and is applicable for the signed communication topology. Then the distributed output feedback control protocol is developed such that the fully distributed bipartite event‐triggered output consensus problem can be achieved. Moreover, we extend the results in HLMASs without external disturbances to HLMASs with disturbances, which is more challenging in three cases (a) the disturbances are not available for measurement, (b) the disturbances suffered by each agent are heterogeneous, and (c) the disturbances are not required to be stable or bounded. It is proven that the proposed controllers fulfill the exclusion of Zeno behavior in two consensus problems. Finally, two examples are provided to illustrate the feasibility of the theoretical results.  相似文献   

12.
    
Consensus problem of multiagent systems with switching jointly connected topologies under sampled‐data control is studied in this article. The main contribution is that the consensus problem for such system is solved without the assumption that the system matrices are stable or critically stable. For this purpose, a time‐varying Lyapunov function method is utilized to describe the state characteristics with switching jointly connected topologies. Based on the time‐varying matrix of Lyapunov function, the “decline” characteristics at the switching instants is derived to compensate the divergence among the agents with disconnected topologies. Utilizing the “decline” characteristics, the overall consensus of such system can be guaranteed in the framework of dwell time. Finally, the effectiveness of the proposed result is illustrated by two numerical examples.  相似文献   

13.
    
In this paper, an output‐feedback adaptive consensus tracking control scheme is proposed for a class of high‐order nonlinear multi‐agent systems. The agents are allowed to have unknown parameters, unknown nonlinearities, and input quantization simultaneously. The desired trajectory to be tracked is available for only a subset of agents, and only the relative outputs and the quantized inputs need to be measured or transmitted as signal exchange among neighbors regardless of the system order. By introducing a kind of high‐gain K‐filters and a smooth function, the effect among agents caused by the unknown nonlinearities is successfully counteracted, and all closed‐loop signals are proved to be globally uniformly bounded. Moreover, it is shown that the tracking errors converge to a residual set that can be made arbitrarily small. Simulation results on robot manipulators are presented to illustrate the effectiveness of the proposed scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
    
In this paper, the problem of distributed containment control for pure‐feedback nonlinear multiagent systems under a directed graph topology is investigated. The dynamics of each agent are molded by high‐order nonaffine pure‐feedback form. Neural networks are employed to identify unknown nonlinear functions, and dynamic surface control technique is used to avoid the problem of explosion of complexity inherent in backstepping design procedure. The Frobenius norm of the ideal neural network weighting matrices is estimated, which is helpful to reduce the number of the adaptive tuning law and alleviate the networked communication burden. The proposed distributed containment controllers guarantee that all signals in the closed‐loop systems are cooperatively semiglobally uniformly ultimately bounded, and the outputs of followers are driven into a convex hull spanned by the multiple dynamic leaders. Finally, the effectiveness of the developed method is demonstrated by simulation examples.  相似文献   

15.
    
This paper considers semi‐global output feedback control for more general nonlinear systems with unknown time‐delay and output function whose derivative is unbounded from above. By introducing a new observer and using the backstepping design method and the Razumikhin stability theorem, an output feedback controller is constructed to achieve a semi‐global stability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
针对线性同质多智能体系统, 提出一种新的降阶输出反馈一致性协议. 该协议仅依赖智能体间相对输出信息, 当相对输出信息可直接测量时, 该协议无需在邻居智能体间共享控制器的状态, 降低系统对通讯媒介的依赖. 本文首先给出该协议存在的充要条件, 然后证明闭环系统的一致性并计算一致性状态. 理论分析表明, 该协议仍然具有类似分离原理的性质, 因此其参数构造过程非常简便. 最后, 通过数值仿真对比实验, 验证了该控制协议的有效性.  相似文献   

17.
    
This paper presents a new approach for sliding‐mode control of discrete‐time systems using the reaching law approach together with periodic output feedback technique. This method does not need the system states for feedback as it makes use of only the output samples for designing the controller. Thus, this methodology is more practical and easy to implement. A numerical example is presented to illustrate the design technique.  相似文献   

18.
    
This article considers the data rate problem for output feedback consensus of uncertain nonlinear multiagent systems. Each agent is modeled by an nth order integrator with unknown nonlinear dynamics and unmeasurable states. An (n+2)th order extended state observer (ESO) is first designed to estimate the unmeasurable agent states and the unknown nonlinear dynamics. Based on the output of the ESO and a dynamic encoding and decoding scheme, a distributed consensus protocol is proposed. It is shown that, for a connected undirected network with nth order uncertain nonlinear agents, consensus can be guaranteed with merely one bit information exchange between each pair of adjacent agents at each time step.  相似文献   

19.
    
The leader–following consensus of linear heterogeneous multiagent systems is investigated in this paper. To comply with the most practical scenario, the communicating topologies among agents are assumed to switch stochastically and driven by a continuous-time discrete-state Markov process, whose state space corresponds to all the possible topologies. A novel distributed adaptive compensator is designed for the followers to reconstruct the exogenous signals without knowing the Laplacian matrix who is regarded as a global information, and sufficient conditions are given to ensure the compensator converges to the dynamic of the leader asymptotically in the mean square sense. Then, based on the compensator, we solved the consensus problem both by distributed state and measurement output feedback control schemes under output regulation framework, which allow followers to have nonidentical state dimensions. Finally, the theoretical results are demonstrated by a numerical example.  相似文献   

20.
戴凌飞  陈昕  过榴晓  张建成 《控制与决策》2023,38(12):3482-3489
研究任意预设时间控制下的多智能体网络系统分组一致性问题.设计非零分组投影参数下任意预设时间控制协议,使得分布式网络系统在物理允许范围内的任意预设时间内迅速实现分组一致,该预设时间与系统参数和初始值都无关系.基于代数图论、李雅普诺夫稳定性和矩阵理论等,分别讨论无向和有向拓扑网络情形下,多智能体系统实现预设时间分组一致的充分条件.独轮车的多智能体系统仿真实验验证了所提方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号