首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we address the problem of output regulation for a broad class of multi‐input multi‐output (MIMO) nonlinear systems. Specifically, we consider input–affine systems, which are invertible and input–output linearizable. This class includes, as a trivial special case, the class of MIMO systems which possess a well‐defined vector relative degree. It is shown that if a system in this class is strongly minimum phase, in a sense specified in the paper, the problem of output regulation can be solved via partial‐state feedback or via (dynamic) output feedback. The result substantially broadens the class of nonlinear MIMO systems for which the problem in question is known to be possible. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We consider the optimal control of feedback linearizable dynamic systems subject to mixed state and control constraints. In contrast to the existing results, the optimal controller addressed in this paper is allowed to be discontinuous. This generalization requires a substantial modification to the existing convergence analysis in terms of both the framework as well as the notion of convergence around points of discontinuity. Although the nonlinear system is assumed to be feedback linearizable, the optimal control does not necessarily linearize the dynamics. Such problems frequently arise in astronautical applications where stringent performance requirements demand optimality over feedback linearizing controls. We prove that a sequence of solutions obtained using the Legendre pseudospectral method converges to the optimal solution of the continuous‐time problem under mild conditions. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

3.
It is shown that a discrete-time system may be linearizable by exogenous dynamic feedback, even if it cannot be linearized by endogenous feedback. This property is completely unexpected and constitutes a fundamental difference with respect to the continuous-time case. The notion of exogenous linearizing output is introduced. It is shown that existence of an exogenous linearizing output is a sufficient condition for dynamic linearizability. Necessary and sufficient conditions for the existence of an exogenous linearizing output are provided. The results of the paper are obtained using transformal operator matrices. The properties of such operators are studied. The theory is applied to the exact discrete-time model of a mobile robot, showing that the above-mentioned property concerns not only academic examples, but also physical systems.  相似文献   

4.
We study in this paper the problem of iterative feedback gains auto‐tuning for a class of nonlinear systems. For the class of input–output linearizable nonlinear systems with bounded additive uncertainties, we first design a nominal input–output linearization‐based robust controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we complement the robust controller with a model‐free multi‐parametric extremum seeking control to iteratively auto‐tune the feedback gains. We analyze the stability of the whole controller, that is, the robust nonlinear controller combined with the multi‐parametric extremum seeking model‐free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
For some switched nonlinear systems, stabilization can be achieved under arbitrary switching with state feedback control. Due to switching zero dynamics, output feedback stabilization for some switched nonlinear systems needs dwell time between switching to guarantee system stability. In this paper, we consider a class of switched nonlinear systems with unknown parameters and unknown switching signals. We design a robust output feedback controller that stabilizes the system under a class of switching signals with average dwell time (ADT) where the value of ADT can be reduced by adjusting the control gain. For some special cases, common quadratic Lyapunov functions of the closed‐loop systems can be found and the value of ADT is further relaxed. Some examples and simulations are provided to validate the results.  相似文献   

6.
This study addresses control‐oriented modeling and control design of tensegrity–membrane systems. Lagrange's method is used to develop a control‐oriented model for a generic system. The equations of motion are expressed as a set of differential‐algebraic equations (DAEs). For control design, the DAEs are converted into second‐order ordinary differential equations (ODEs) based on coordinate partitioning and coordinate mapping. Because the number of inputs is less than the number of state variables, the system belongs to the class of underactuated nonlinear systems. A nonlinear adaptive controller based on the collocated partial feedback linearization (PFL) technique is designed for system deployment. The stability of the closed‐loop system for the actuated coordinates is studied using the Lyapunov stability theory. Because of system complexity, numerical tests are used to conduct stability analysis for the dynamics of the underactuated coordinates, which represents the system's zero dynamics. For the tensegrity–membrane systems studied in this work, analytical proof of zero dynamics stability remains an open theoretical problem. An H controller is implemented for rapid stabilization of the system at the final deployed configuration. Simulations are conducted to test the performance of the two controllers. The simulation results are presented and discussed in detail. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
For a class of high‐order stochastic nonlinear systems with stochastic inverse dynamics which are neither necessarily feedback linearizable nor affine in the control input, this paper investigates the problem of state‐feedback stabilization for the first time. Under some weaker assumptions, a smooth state‐feedback controller is designed, which ensures that the closed‐loop system has an almost surely unique solution on [0, ∞), the equilibrium at the origin of the closed‐loop system is globally asymptotically stable in probability, and the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we focus on the problem of adaptive stabilization for a class of uncertain switched nonlinear systems, whose non-switching part consists of feedback linearizable dynamics. The main result is that we propose adaptive controllers such that the considered switched systems with unknown parameters can be stabilized under arbitrary switching signals. First, we design the adaptive state feedback controller based on tuning the estimations of the bounds on switching parameters in the transformed system, instead of estimating the switching parameters directly. Next, by incorporating some augmented design parameters, the adaptive output feedback controller is designed. The proposed approach allows us to construct a common Lyapunov function and thus the closed-loop system can be stabilized without the restriction on dwell-time, which is needed in most of the existing results considering output feedback control. A numerical example and computer simulations are provided to validate the proposed controllers.  相似文献   

9.
The problem of global stabilization by output feedback is investigated in this paper for a class of nonminimum‐phase nonlinear systems. The system under consideration has a cascade configuration that consists of a driven system known as the inverse dynamics and a driving system. It is proved that although the zero dynamics may be unstable, there is an output feedback controller, globally stabilizing the nonminimum‐phase system if both driven and driving systems have a lower‐triangular form and satisfy a Lipschitz‐like condition, and the inverse dynamics satisfy a stronger version of input‐to‐state stabilizability condition. A design procedure is provided for the construction of an n‐dimensional dynamic output feedback compensator. Examples and simulations are also given to validate the effectiveness of the proposed output feedback controller. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, the problems of stochastic disturbance attenuation and asymptotic stabilization via output feedback are investigated for a class of stochastic nonlinear systems with linearly bounded unmeasurable states. For the first problem, under the condition that the stochastic inverse dynamics are generalized stochastic input‐to‐state stable, a linear output‐feedback controller is explicitly constructed to make the closed‐loop system noise‐to‐state stable. For the second problem, under the conditions that the stochastic inverse dynamics are stochastic input‐to‐state stable and the intensity of noise is known to be a unit matrix, a linear output‐feedback controller is explicitly constructed to make the closed‐loop system globally asymptotically stable in probability. Using a feedback domination design method, we construct these two controllers in a unified way. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization is investigated for the first time. Under some weaker assumptions, a smooth state feedback controller is designed, which ensures that the closed-loop system has an almost surely unique solution on [0,∞), the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability, and all the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme.  相似文献   

12.
A linear feedback control scheme to globally stabilize a class of partially linear composite systems is proposed from the point view of homogeneity. Assume that the global stability of the zero dynamics of the nonlinear subsystem can be tested by using a homogeneous Lyapunov function. It is shown that the stabilization of the linear controllable subsystem from its own states equals to the stabilization of the whole systems if the nonlinearities satisfy a homogeneous inequality condition. Then we assume that the states are not measurable and also extend the method developed for state‐feedback control to the output‐feedback case. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

13.
This paper addresses a robust control approach for a class of input–output linearizable nonlinear systems with uncertainties and modeling errors considered as unknown inputs. As known, the exact feedback linearization method can be applied to control input–output linearizable nonlinear systems, if all the states are available and modeling errors are negligible. The mentioned two prerequisites denote important problems in the field of classical nonlinear control. The solution approach developed in this contribution is using disturbance rejection by applying feedback of the uncertainties and modeling errors estimated by a specific high‐gain disturbance observer as unknown inputs. At the same time, the nonmeasured states can be calculated from the estimation of the transformed system states. The feasibility and conditions for the application of the approach on mechanical systems are discussed. A nonlinear multi‐input multi‐output mechanical system is taken as a simulation example to illustrate the application. The results show the robustness of the control design and plausible estimations of full‐rank disturbances.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established.  相似文献   

15.
具有零动态仿射非线性系统控制Lyapunov函数的构造   总被引:1,自引:0,他引:1  
研究具有零动态仿射非线性系统控制Lyapunov函数的构造问题.提出通过求解一个Lyapunov方程获得可线性化部分的二次型控制Lyapunov函数.由可线性部分的控制Lyapunov函数和零动态部分的Lyapunov函数,通过构造一个正定函数,得到了整个系统的控制Lyapunov函数,且设计了可半全局镇定整个闭环系统的控制律.仿真实例说明了所提出方法的有效性.  相似文献   

16.
This paper investigates maneuver regulation for single-input control-affine systems from a geometric perspective. The maneuver regulation problem is converted to output stabilization and necessary and sufficient conditions are provided to solve the latter problem by feedback linearizing the dynamics transverse to a suitable embedded submanifold of the state space. When specialized to the linear time invariant setting, this work recovers well-known results on output stabilization.  相似文献   

17.
This paper discusses the problem of preserving approximated feedback linearization under digital control. Starting from a partially feedback linearizable affine continuous-time dynamics, a digital control procedure which maintains the dimension of the maximally feedback linearizable part up to any order of approximation with respect to the sampling period is proposed. The result is based on the introduction of a sampled normal form, a canonical structure which naturally appears when studying feedback linearization.This work was supported by an Italian 40% M.U.R.S.T. grant and a French M.E.N.-D.R.E.D. grant.  相似文献   

18.
具有扰动输入的不确定性非线性系统的输出调节极限性能   总被引:2,自引:0,他引:2  
本文研究了一类具有扰动输入的不确定性非线性系统的输出调节问题, 给出了该类系统在最差的不确定性参数和扰动输入情况下系统输出调节的极限性能. 所讨论的非线性系统是可镇定非最小相位系统, 并且该系统的零动态由“鲁棒输入对状态稳定(robust input-to-state stable)部分”和“不稳定但可镇定部分”组成. 假设系统的不确定性参数和扰动输入分别以非线性函数和仿射形式同时出现在系统零动态的鲁棒输入对状态稳定部分和系统的可线性化部分, 而且其可线性化部分的不确定性具有下三角形结构形式. 该系统输出调节问题的性能以其输出信号能量作为度量. 对于上述非线性系统, 在最差的不确定性参数和扰动输入情况下, 输出调节问题的极限性能只取决于镇定其零动态“不稳定部分”所需的最小能量.  相似文献   

19.
This article studies the adaptive output feedback control problem of a class of uncertain nonlinear systems with unknown time delays. The systems considered are dominated by a triangular system without zero dynamics satisfying linear growth in the unmeasurable states. The novelty of this article is that a universal-type adaptive output feedback controller is presented to time-delay systems, which can globally regulate all the states of the uncertain systems without knowing the growth rate. An illustrative example is provided to show the applicability of the developed control strategy.  相似文献   

20.
We present normal forms for nonlinear control systems that are the closest to static feedback linearizable ones, that is, for systems that become feedback linearizable via the simplest dynamic feedback, which is the one‐fold prolongation of a suitably chosen control. They form a particular class of flat systems, namely those of differential weight n + m + 1, where n is the number of states and m is the number of controls. We also show that the dynamic feedback may create singularities in the control space depending on the state and we discuss them. We also address the issue of the normalization of the system only versus that of the system together with a flat output. Finally, we illustrate our results by several examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号