首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the Ritz spectral method to solve a class of fractional optimal control problems (FOCPs). The developed numerical procedure is based on the function approximation by the Bernstein polynomials along with fractional operational matrix usage. The approximation method is computationally consistent and moreover, has a good flexibility in the sense of satisfying the initial and boundary conditions of the optimal control problems. We construct a new fractional operational matrix applicable in the Ritz method to estimate the fractional and integer order derivatives of the basis. As a result, we achieve an unconstrained optimization problem. Next, by applying the necessary conditions of optimality, a system of algebraic equations is obtained. The resultant problem is solved via Newton's iterative method. Finally, the convergence of the proposed method is investigated and several illustrative examples are added to demonstrate the effectiveness of the new methodology.  相似文献   

2.
This paper focuses on proposing novel conditions for stability analysis and stabilization of the class of nonlinear fractional‐order systems. First, by considering the class of nonlinear fractional‐order systems as a feedback interconnection system and applying small‐gain theorem, a condition is proposed for L2‐norm boundedness of the solutions of these systems. Then, by using the Mittag‐Leffler function properties, we show that satisfaction of the proposed condition proves the global asymptotic stability of the class of nonlinear fractional‐order systems with fractional order lying in (0.5, 1) or (1.5, 2). Unlike the Lyapunov‐based methods for stability analysis of fractional‐order systems, the new condition depends on the fractional order of the system. Moreover, it is related to the H‐norm of the linear part of the system and it can be transformed to linear matrix inequalities (LMIs) using fractional‐order bounded‐real lemma. Furthermore, the proposed stability analysis method is extended to the state‐feedback and observer‐based controller design for the class of nonlinear fractional‐order systems based on solving some LMIs. In the observer‐based stabilization problem, we prove that the separation principle holds using our method and one can find the observer gain and pseudostate‐feedback gain in two separate steps. Finally, three numerical examples are provided to demonstrate the advantage of the novel proposed conditions with the previous results.  相似文献   

3.
This paper considers the finite‐time stability of fractional order impulsive switched systems. First, by using the fractional order Lyapunov function, Mittag–Leffler function, and Gronwall–Bellman lemma, two sufficient conditions are given to verify the finite‐time stability of fractional order nonlinear systems. Then, the concept of finite‐time stability is extended to fractional order impulsive switched systems. A sufficient condition is given to verify the finite‐time stability of fractional order impulsive switched systems by combining the method of average dwell time with fractional order Lyapunov function. Finally, two numerical examples are provided to illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The observer design problem for integer‐order systems has been the subject of several studies. However, much less interest has been given to the more general fractional‐order systems, where the fractional‐order derivative is between 0 and 1. In this paper, a particular form of observers for integer‐order Lipschitz, one‐sided Lipschitz and quasi‐one‐sided Lipschitz systems, is extended to the fractional‐order calculus. Then, the obtained states estimates are used for an eventual feedback control, and the separation principle is tackled. The effectiveness of the proposed scheme is shown through simulation for two numerical examples.  相似文献   

5.
In this paper, we present a stabilization method on the non‐linear fractional‐order uncertain systems. Firstly, a sufficient condition for the robust asymptotic stabilization of the non‐linear fractional‐order uncertain system is presented based on direct Lyapunov approach. Secondly, utilising the matrix's singular value decomposition (SVD) method, the systematic robust stabilization design algorithm is then proposed. Finally, two numerical examples are provided to illustrate the efficiency and advantage of the proposed algorithm.  相似文献   

6.
A robust fractional‐order dynamic output feedback sliding mode control (DOF‐SMC) technique is introduced in this paper for uncertain fractional‐order nonlinear systems. The control law consists of two parts: a linear part and a nonlinear part. The former is generated by the fractional‐order dynamics of the controller and the latter is related to the switching control component. The proposed DOF‐SMC ensures the asymptotical stability of the fractional‐order closed‐loop system whilst it is guaranteed that the system states hit the switching manifold in finite time. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

7.
Stability and stabilization analysis of fractional‐order linear time‐invariant (FO‐LTI) systems with different derivative orders is studied in this paper. First, by using an appropriate linear matrix function, a single‐order equivalent system for the given different‐order system is introduced by which a new stability condition is obtained that is easier to check in practice than the conditions known up to now. Then the stabilization problem of fractional‐order linear systems with different fractional orders via a dynamic output feedback controller with a predetermined order is investigated, utilizing the proposed stability criterion. The proposed stability and stabilization theorems are applicable to FO‐LTI systems with different fractional orders in one or both of 0 <  α  < 1 and 1 ≤  α  < 2 intervals. Finally, some numerical examples are presented to confirm the obtained analytical results.  相似文献   

8.
In this paper, we investigate the problem of finite‐time guaranteed cost control of uncertain fractional‐order neural networks. Firstly, a new cost function is defined. Then, by using linear matrix inequalities (LMIs) approach, some new sufficient conditions for the design of a state feedback controller which makes the closed‐loop systems finite‐time stable and guarantees an adequate cost level of performance are derived. These conditions are in the form of linear matrix inequalities, which therefore can be efficiently solved by using existing convex algorithms. Finally, two numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

9.
This paper considers the problem of designing functional interval observers for a class of non‐linear fractional‐order systems with bounded uncertainties. First, interval observers for linear functions of the state vector of the considered system are designed. Then, conditions for the existence of such interval observers are established and an effective algorithm for computing unknown observer matrices is provided in this paper. Finally, numerical examples and simulation results are given to illustrate the effectiveness of the proposed design method.  相似文献   

10.
This paper presents a numerical solution for solving a nonlinear 2-D optimal control problem (2DOP). The performance index of a nonlinear 2DOP is described with a state and a control function. Furthermore, dynamic constraint of the system is given by a classical diffusion equation. It is preferred to use the Ritz method for finding the numerical solution of the problem. The method is based upon the Legendre polynomial basis. By using this method, the given optimisation nonlinear 2DOP reduces to the problem of solving a system of algebraic equations. The benefit of the method is that it provides greater flexibility in which the given initial and boundary conditions of the problem are imposed. Moreover, compared with the eigenfunction method, the satisfactory results are obtained only in a small number of polynomials order. This numerical approach is applicable and effective for such a kind of nonlinear 2DOP. The convergence of the method is extensively discussed and finally two illustrative examples are included to observe the validity and applicability of the new technique developed in the current work.  相似文献   

11.
In this paper, a finite‐time stability results of linear delay fractional‐order systems is investigated based on the generalized Gronwall inequality and the Caputo fractional derivative. Sufficient conditions are proposed to the finite‐time stability of the system with the fractional order. Numerical results are given and compared with other published data in the literature to demonstrate the validity of the proposed theoretical results.  相似文献   

12.
This paper addresses Master–Slave synchronization for some memristor‐based fractional‐order BAM neural networks (MFBNNs) with mixed time varying delays and switching jumps mismatch. Firstly, considering the inherent characteristic of FMNNs, a new type of fractional‐order differential inequality is proposed. Secondly, an adaptive switching control scheme is designed to realize the global projective lag synchronization goal of MFBNNs in the sense of Riemann‐Liouville derivative. Then, based on a suitable Lyapunov method, under the framework of set‐valued map, differential inclusions theory, fractional Barbalat's lemma and proposed control scheme, some new projective lag synchronization criteria for such MFBNNs are obtained. Finally, some numerical examples are presented to illustrate the effectiveness of the proposed theoretical analysis.  相似文献   

13.
In this paper, a new computational method based on the Legendre wavelets (LWs) is proposed for solving a class of variable‐order fractional optimal control problems (V‐FOCPs). To do this, a new operational matrix of variable‐order fractional integration (OMV‐FI) in the Riemann‐Liouville sense for the LWs is derived and used to obtain an approximate solution for the problem under study. Along the way the hat functions (HFs) are introduced and employed to derive a general procedure to compute this matrix. In the proposed method, the variable‐order fractional dynamical system is transformed to an equivalent variable‐order fractional integro‐differential dynamical system, at first. Then, the highest integer order of the derivative of the state variable and the control variable are expanded by the LWs with unknown coefficients. Next, the OMV‐FI in the the Riemann‐Liouville sense together with some properties of the LWs are employed to achieve a nonlinear algebraic equation in place of the performance index and a nonlinear system of algebraic equations in place of the dynamical system in terms of the unknown coefficients. Finally, the method of constrained extremum is applied which consists of adjoining the constraint equations derived from the given dynamical system to the performance index by a set of undetermined Lagrange multipliers. As a result, the necessary conditions of optimality are derived as a system of algebraic equations in the unknown coefficients of the state variable, control variable and Lagrange multipliers. Furthermore, the efficiency and accuracy of the proposed method are demonstrated for some concrete examples. The obtained results show that the proposed method is very efficient and accurate.  相似文献   

14.
This study proposes the design of unscented Kalman filter for a continuous‐time nonlinear fractional‐order system involving the process noise and the measurement noise. The nonlinear fractional‐order system is discretized to get the difference equation. According to the unscented transformation, the design method of unscented Kalman filter for a continuous‐time nonlinear fractional‐order system is provided. Compared with the extended Kalman filter, the proposed method can obtain a more accurate estimation effect. For fractional‐order systems containing non‐differentiable nonlinear functions, the method proposed in this paper is still effective. The unknown parameters are also discussed by the augmented vector method to achieve the state estimation and parameter identification. Finally, two examples are offered to verify the effectiveness of the proposed unscented Kalman filter for nonlinear fractional‐order systems.  相似文献   

15.
This paper is concerned with the globally asymptotic stability of the Riemann‐Liouville fractional‐order neural networks with time‐varying delays. The Lyapunov functional approach to stability analysis for nonlinear fractional‐order functional differential equations is discussed. By constructing an appropriate Lyapunov functional associated with the Riemann‐Liouville fractional integral and derivative, the asymptotic stability criteria of fractional‐order neural networks with time‐varying delays and constant delays are derived. The advantage of our proposed method is that one may directly calculate the first‐order derivative of the Lyapunov functional. Two numerical examples are also presented to illustrate the validity and feasibility of the theoretical results. With the increasing of the order of fractional derivatives, the state trajectories of neural networks show that the speeds of converging toward zero solution are faster and faster.  相似文献   

16.
By using the Grünwald‐Letnikov (G‐L) difference method and the Tustin generating function method, this study presents extended Kalman filters to achieve satisfactory state estimation for fractional‐order nonlinear continuous‐time systems that containing some unknown parameters with the correlated fractional‐order colored noises. Based on the G‐L difference method and the Tustin generating function method, the difference equations corresponding to fractional‐order nonlinear continuous‐time systems are constructed respectively. The first‐order Taylor expansion is used to linearize the nonlinear functions in the estimated system, which provides the system model for extended Kalman filters. Using the augmented vector method, the unknown parameters are regarded as new state vectors, and the augmented difference equation is constructed. Based on the augmented difference equation, extended Kalman filters are designed to estimate the state of fractional‐order nonlinear systems with process noise as fractional‐order colored noise or measurement noise as fractional‐order colored noise. Meanwhile, the extended Kalman filters proposed in this paper can also estimate the unknown parameters effectively. Finally, the effectiveness of the proposed extended Kalman filters is validated in simulation with two examples.  相似文献   

17.
This paper describes a variable structure control for fractional‐order systems with delay in both the input and state variables. The proposed method includes a fractional‐order state predictor to eliminate the input delay. The resulting state‐delay system is controlled through a sliding mode approach where the controller uses a sliding surface defined by fractional order integral. Then, the proposed control law ensures that the state trajectories reach the sliding surface in finite time. Based on recent results of Lyapunov stability theory for fractional‐order systems, the stability of the closed loop is studied. Finally, an illustrative example is given to show the interest of the proposed approach.  相似文献   

18.
In this paper, a new class of two‐dimensional nonlinear variable‐order fractional optimal control problems (V‐OFOCPs) is introduced where the variable‐order fractional derivative is defined in the Caputo type. The general procedure for solving theses systems is expanding the state variable and the control variable based on the Legendre cardinal functions in the matrix form. Hence, we derive their operational matrix of derivative (OMD) and operational matrix of variable‐order fractional derivative (OMV‐OFD). More significantly, some properties of these basis functions are proved to be exploited in our approach. Using these achieved results, we simply expand the matrix form of the nonlinear performance index in terms of the Legendre cardinal functions and subsequently convert it to an algebraic equation. We emphasize that it is a valuable advantage of applying cardinal functions in approximation theory. Then, we implement the OMD and the OMV‐OFD of the Legendre cardinal functions to transform the variable‐order fractional dynamical system to a system of algebraic equations. Next, the method of constrained extremum is applied to adjoin the constraint equations including the given dynamical system and the initial‐boundary conditions to the performance index by a set of undetermined Lagrange multipliers. Finally, the necessary conditions of the optimality are derived as a system of nonlinear algebraic equations including the unknown coefficients of the state variable, the control variable and the Lagrange multipliers. The applicability and efficiency of the proposed approach are investigated through the various types of test problems.  相似文献   

19.
The paper is concerned with problem of the full‐order and reduced‐order observer design for a class of fractional‐order one‐sided Lipschitz nonlinear systems. By introducing a continuous frequency distributed equivalent model and using indirect Lyapunov approach, the sufficient condition for asymptotic stability of the full‐order observer error dynamic system is presented. Furthermore, the proposed design method was extended to reduced‐order observer design for fractional‐order nonlinear systems. All the stability conditions are obtained in terms of LMI, which are less conservative than some existing ones. Finally, a numerical example demonstrates the validity of this approach.  相似文献   

20.
This paper deals with the stabilization of a class of commensurate fractional order uncertain nonlinear systems. The fractional order system concerned is of the strict‐feedback form with uncertain nonlinearity. An adaptive control scheme combined with fractional order update laws is proposed by extending classical backstepping control to fractional order backstepping scheme. The asymptotic stability of the closed‐loop system is guaranteed under the construction of fractional Lyapunov functions in the sense of generalized Mittag‐Leffler stability. The fractional order nonlinear system investigated can be stabilized asymptotically globally in presence of arbitrary uncertainty. Finally illustrative examples and numerical simulations are performed to verify the effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号