首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This article investigates a dual band multiple input multiple output (MIMO) cylindrical dielectric resonator antenna (cDRA) for WLAN and WiMAX applications. It consists of two symmetrical orthogonally placed radiators. Each radiator is excited through a narrow rectangular aperture with the help of a microstrip line. For higher mode excitation, the proposed structure uses dual segment DRA which apparently looks like stacked geometry. The aperture fed dielectric resonator works as a feed for upper cDRA to generate higher order mode. The presented radiator covers the band between 3.3‐3.8 GHz and 5‐5.7 GHz. The measured isolation is better than 20 dB in the desired band. The average gain and radiation efficiency achieved for the proposed antenna is 6.0 dBi and 85%, respectively at the operating frequency band. In the proposed geometry, broadside radiation patterns are achieved by exciting HEM11δ and HEM12δ modes in a stacked geometry. Different MIMO performance parameters (ECC, DG, MEG, and CCL) are also estimated and analyzed. The prototype of proposed antenna is fabricated and tested. The measured outcomes are in good accord with the simulated one.  相似文献   

2.
An investigation to enhance the decoupling between the elements of a compact wide band multiple‐input multiple‐output (MIMO) antenna is presented in this communication. A microstrip neutralization line (NL) is designed on the top of antenna surface to enhance the port isolation. The geometry is embedded on a jeans material to be apposite for the on‐body wearable applications. The antenna covers the frequency spectra from 3.14 to 9.73 GHz (around 102.4%) and fulfills the bandwidth requirements of WiMAX (3.2‐3.8 GHz), WLAN (5.15‐5.35/5.72‐5.85 GHz), C band downlink‐uplink (3.7‐4.2/5.9‐6.425 GHz), downlink defense (7.2‐7.7 GHz), and ITU (8‐8.5 GHz) bands. The port isolation is found to be more than 32 dB over the whole application bands. The antenna is appraised in a rich scattering environment with very minimal envelope correlation coefficient (ECC < 0.12) and great amount of diversity gain (DG > 9.8). The proposed MIMO antenna system is able to achieve the channel capacity loss (CCL) of less than 0.2 BPS/Hz throughout the whole operating band. The proposed structure is etched on an area of 30 × 50 mm2. The simulated and measured performances of the proposed antenna are in well‐matched state.  相似文献   

3.
This communication describes a simple compact wide band multiple input multiple output (MIMO) antenna for Wireless Local Area Network (WLAN) and Worldwide Interoperability for Microwave Access (WiMAX) applications. The proposed antenna is integrated with an electromagnetic band gap (EBG) structure which is used to reduce the mutual coupling between the ports. The structure is excited by a line feed mechanism and investigated experimentally. The antenna covers the frequency range from 2.01 to 3.92 GHz with the corresponding fractional bandwidth of 64.42%. It fulfills the bandwidth requirements of WLAN (2.35‐2.5 GHz) and WiMAX (3.2‐3.85 GHz) bands where minimum port isolation is obtained around 29 dB throughout the entire application band. The proposed MIMO antenna has very low envelope correlation co‐efficient (ECC < 0.01) and high diversity gain (DG > 9.8). It also has very low channel capacity loss (CCL) which is found to be less than 0.2 Bit/s/Hz. The simulation results are compared with the measurement outcomes and found a good agreement between them.  相似文献   

4.
The communication presents a simple dielectric resonator (DR) multiple‐input‐multiple‐output (MIMO) dual‐band antenna. It utilizes two “I”‐shaped DR elements to construct an “I”‐shaped DR array antenna (IDRAA) for MIMO applications. The ground plane of the antenna is defected by two spiral complementary meander lines and two circular ground slots. In the configuration, two “I”‐shaped DR elements are placed with a separation of 0.098λ. The antenna covers dual‐band frequency spectra from 3.46 to 5.37 GHz (43.26%) and from 5.89 to 6.49 GHz (9.7%). It ensures the C‐band downlink (3.7‐4.2 GHz), uplink (5.925‐6.425 GHz), and WiMAX (5.15‐5.35 GHz) frequency bands. Each DR element is excited with a 50‐Ω microstrip line feed with aperture‐coupling mechanism. The antenna offers very high port isolation of around 18.5 and 20 dB in the lower band and upper band, respectively. The proposed structure is suitable to operate in the MIMO system because of its very nominal envelope correlation coefficient (<0.015) and high diversity gain (>9.8). The MIMO antenna provides very good mean effective gain value (±0.35 dB) and low channel capacity loss (<0.35 bit/s/Hz) throughout the entire operating bands. Simulated and measured results are in good agreement and they approve the suitability of the proposed IDRAA for C‐band uplink and downlink applications and WiMAX band applications.  相似文献   

5.
This article proposes a multiple input multiple output (MIMO) antenna for 5G‐based vehicular communication applications. The designed MIMO antenna consist of two element iterated T‐shape antenna with defected ground structure (DGS) and split ring resonator. The antenna providing reflection coefficient S11 s11 ≤10 dB and bandwidth of 6.3 and 3.96 GHz over the frequency range of 26.83 to 33.13 GHz and 34.17 to 38.13 GHz, respectively. For the suitable future vehicular millimetric wave communications, this antenna achieved resonant frequencies at 28, 33, and 37 GHz. The designed antenna has achieved peak gain of 7.11 dB in operating band. It is fabricated on 12 x 25.4 x 0.8 mm3 Rogers RT duroid 5880 substrate with dielectric constant (εr) of 2.2. The antenna is placed on vehicle in virtual environmental using ANSYS SAVANT tool and the simulated results are showing good matching with the measured results of proposed MIMO antenna.  相似文献   

6.
A quad‐port planar multiple‐input‐multiple‐output (MIMO) antenna possessing super‐wideband (SWB) operational features and triple‐band rejection characteristics is designed. The proposed MIMO configuration consists of four modified‐elliptical‐self‐complementary‐antenna (MESCA) elements, which are excited by tapered co‐planar waveguide (TCPW) feed lines. A radiator‐matched complementary slot is present in the ground conductor patch of each MESCA element. The proposed MIMO antenna exhibits a bandwidth ratio of 36:1 (|S11| < ?10 dB; 0.97‐35 GHz). Further, a step‐like slit‐resonator is etched in the radiator to eliminate interferences at 3.5 GHz. A hexagonal shaped complementary split ring resonator (CSRR) is also loaded on the MESCA radiator to remove interferences at 5.5 and 8.5 GHz. The MIMO antenna is fabricated on FR‐4 substrate of size 63 × 63 mm2 and experimental results are found in good agreement with the simulated results. The MIMO antenna exhibits inter‐element isolation >17 dB and envelope correlation coefficient (ECC) <0.01 at all the four ports.  相似文献   

7.
A compact four and eight elements multiple‐input‐multiple‐output (MIMO) antenna designed for WLAN applications is presented in this article. The antenna operates in IEEE 802.11b/g WLAN (2.4 GHz), IEEE 802.11 ac/n WLAN (5.2 and 5.8 GHz) and WiMAX (5.8 GHz) bands. The resonated mode of the antenna is achieved by two unequal Reverse‐L shaped, line‐shaped slots on top and parasitic element on the ground layer. The single antenna provides wide bandwidth of about 29% (2.3‐3.1 GHz) in lower and 22% (4.9‐6.1 GHz) in the upper band. The compactness of the single element antenna is found about 95% with respect to the patch and 61% in overall dimension. Thereafter an investigation is carried out to design two, four, and eight elements MIMO antennas. All of the multi‐element structures provide compact configuration and cover entire WLAN frequency ranges (2.4‐2.48 and 5.15‐5.85 GHz). The dimension of the proposed eight element MIMO antenna is 102 × 52 × 1.6 mm3. It covers the frequency (measured) from 2.4 to 3.1 GHz and 5 to 6.1 GHz. The diversity performance of the proposed MIMO antenna is also assessed in terms of the envelope correlation coefficient (ECC), diversity gain (DG), and total active reflection co‐efficient (TARC). The ECC is found <0.5 whereas the DG >9.0 is obtained for the desired bands.  相似文献   

8.
This communication presents a compact wide band wearable MIMO antenna with very low mutual coupling (VLMC). The proposed antenna is composed of Jeans material. Two “I” shaped stubs are connected in series and are employed on the ground plane between the two patches separated by 0.048 λ to increase isolation characteristics of the antenna‐port. The antenna covers frequency spectrum from 1.83 GHz to 8 GHz (about 125.5%) where the minimum port isolation of about 22 dB at 2.4 GHz and maximum of about 53 dB at 5.92 GHz are obtained. The envelope correlation coefficient (ECC) of the MIMO antenna is obtained to be less than 0.01 with a higher diversity gain (DG > 9.6) throughout the whole operating band. The proposed MIMO antenna is cost effective and works over a wide frequency band of WLAN (2.4‐2.484 GHz/5.15‐5.35 GHz/5.72‐5.825 GHz), WiMAX (3.2‐3.85 GHz) and C‐band downlink‐uplink (3.7‐4.2 GHz/5.925‐6.425 GHz) applications. Simulation results are in well agreement with the measurement results.  相似文献   

9.
A compact ultra‐wideband multiple‐input multiple‐output (UWB‐MIMO) antenna with good isolation and multiple band‐notch abilities is developed in this work. It consists of two quadrant shaped monopole antennas backed by ground stubs. A good isolation is achieved due to the two proposed extended curved ground stubs. The frequency rejection for the WLAN system is realized by loading a capacitive loaded loop resonator adjacent to the feed line. The band rejection for the WiMAX and LTE band43 system is achieved by embedding a quadrant shaped CSRR on each radiator's surface. The measured bandwidth of the antenna is 3.06 GHz‐11 GHz (|S11| < ?10 dB and |S21| < ?18 dB) with a band rejection from 3.5 GHz‐4 GHz to 5.1 GHz‐5.85 GHz, respectively. Time domain performances are investigated in terms of group and phase delay characteristics. Diversity characteristics are evaluated in terms of the envelope correlation coefficient, mean effective gain, and channel capacity loss.  相似文献   

10.
In this article, a multiple‐input‐multiple‐output (MIMO) antenna with high isolation is proposed for ultrawideband (UWB) applications. The proposed MIMO antenna consists of two symmetric slot antenna elements with quasi F‐shaped radiators and L‐shaped open‐slots to increase impedance bandwidth. To improve isolation at the lower band, a decoupling network, composed of a narrow slot and a fork‐shaped slot, is introduced in the common ground. The measured results show that the proposed antenna provides high isolation of better than 20 dB over the operating band from 3 to 10.9 GHz. The performances of the UWB MIMO antenna in terms of radiation patterns, peak gain, envelope correlation coefficient, mean effective gain, and diversity gain are also studied.  相似文献   

11.
A novel dual‐band MIMO dielectric resonator antenna with high port isolation for WiMAX and WLAN applications is designed and investigated. The proposed antenna operates at 3.5 and 5.25 GHz bands. High port isolation is achieved using hybrid feeding mechanism that excites two orthogonal modes at each frequency bands. The measured impedance bandwidth of the proposed antenna covers the entire WiMAX (3.4–3.7) GHz and WLAN (5.15–5.35) GHz bands. The scalable behavior along with the frequency ratio of the antenna has also been investigated in this work. The measured isolation between antenna ports is ?52 dB at the lower band and ?46 dB at the upper band, respectively. Envelope correlation coefficient, diversity gain and mean effective gain have also been investigated. Moreover, measured results are in good agreement with the simulated ones.  相似文献   

12.
In this article, a dual‐band circularly polarized multiple‐input‐multiple‐output (MIMO) dielectric resonator antenna (DRA) is proposed for 3.5 and 5.5 GHz bands, both being located under 6 GHz. Known as sub‐6 (or as mid‐band), they provide good coverage and capacity in the newly targeted fifth‐generation (5G) systems. The proposed structure consists of two ring DRAs (RDRAs) etched on a 0.8 mm thick RT Duroid substrate. Measured impedance bandwidths in broadside direction are 3.1‐3.75 GHz (19%) and 5.3‐5.6 GHz (9.4%) and circular polarization (CP) bandwidths are 3.425‐3.6 GHz (5%) and 5.45‐5.55 GHz (2%), respectively. CP is achieved by exciting HE modes using two probes placed orthogonaly to each other, that is, at an azimuthal angular distance of 90° . Varying the lengths of the probe allows achieving the necessary time‐phase quadrature between modes. Comparison between recent multiband circularly polarized MIMO DRAs and proposed prototype has revealed that CP bandwidth in both bands is one of the highlighting advantages of the present configuration.  相似文献   

13.
A dual‐port multiple‐input multiple‐output (MIMO) dielectric resonator antenna (DRA) for 5 GHz IEEE (802.11a/h/j/n/ac/ax) is discussed in this article. Two prototypes of single feed DRA and dual feed MIMO DRA are fabricated and measured results are compared with the simulated data. The proposed single feed DRA and dual feed MIMO DRA exhibits wide impedance bandwidth (IBW). Antennas have been fabricated on Rogers RT Duroid substrate with Eccostock made DRA placed over the substrate. DRAs are excited by aperture coupled feed to achieve wide bandwidth and high efficiency. The measured IBW of uniport DRA and dual‐port MIMO DRA are 26.6% (4.75‐6.21 GHz) and 27.5% (4.7‐6.2 GHz) respectively. Maximum gain of the antenna is 7.4 dBi. The results of the antennas are in good agreement with simulated data and they are suitable for WLAN applications. These antennas are also compact with area of substrate 32.8 cm2.  相似文献   

14.
A four‐port multiple input multiple‐output (MIMO) antenna with common radiating element is proposed for 2.4 GHz Wi‐Fi applications. It comprises a modified circular radiator fed by four identical modified feedlines, partial ground planes, and a diagonal parasitic element (DPE). The parasitic element is used to enhance the interport isolation. The antenna has a 2:1 Voltage standing wave ratio (VSWR) impedance band 2.34‐2.56 GHz and nearly omnidirectional radiation patterns. The radiation efficiency is more than 79% and gain is 2 dBi at resonant 2.43 GHz. The isolation in the given frequency band is 10 dB. At the 2.43 GHz, the isolation between adjacent ports (1, 2 and 1, 4) is 14 dB and between opposite ports (1, 3) is 12 dB. The mean effective gain (MEG) ≤ ?2.7 dB and envelope correlation coefficient is <0.01. The ?10 dB total active reflection coefficient bandwidth is 202 MHz. The antenna is designed for a Wi‐Fi device and the effectiveness of antenna has been checked for distance of ½ feet from the human head. The specific absorption rate (SAR) is found to be ≤0.17 W/Kg by CST simulation tool.  相似文献   

15.
A new compact three‐dimensional multiple‐input‐multiple‐output (MIMO) antenna comprised of eight antenna elements is presented. The unit cell of the proposed MIMO/diversity antenna consists of three elliptical rings connected together in the region close to the feed line and a rectangular‐shaped modified ground plane. To achieve polarization diversity with the proposed eight‐port MIMO configuration, four antenna elements are horizontally arranged and the remaining four are vertically oriented. The proposed antenna has an impedance bandwidth (S11 < ?10 dB) of 25.68 GHz (3.1‐28.78 GHz) with a wireless local area network notch‐band at 5.8 GHz (5.2‐6.5 GHz). In addition to polarization diversity, the proposed antenna provides a reliable link with wireless devices. The prototype antenna design is fabricated and measured for diversity performance. Also, the proposed MIMO antenna provides good performance metrics such as apparent diversity gain, channel capacity loss, envelope correlation coefficient, isolation, mean effective gain, multiplexing efficiency, and total active reflection coefficient.  相似文献   

16.
A compact MIMO antenna was proposed in this article. The designed antenna is compact in size with dimensions of 20 × 34 × 1.6 mm. In this proposed antenna model the patch consisting of two counter facing C‐shaped elements facing each other in which a hexagonal ring attached to a strip line which is placed in between the two C‐shaped patch acts as the stub. The novelty of the antenna elements lies isolation improvement by using the ground stub with the use of circular ring resonator. The proposed antenna operates in four bands in which 2.66 to 3.60 GHz (Wi‐Max, Wi‐Fi), 4.52 to 5.78 GHz (WLAN), 6.59 to 7.40 GHz (satellite communication), and 9.55 to 10.91 GHz and having bandwidth of 0.94, 1.26, 0.81, and 1.36 GHz at four bands. The envelope correlation coefficient is ECC ≤ 0.3 and diversity gain > 9.8 dB for the operating bands of antenna proposed. This antenna can work in the bands of Wi‐Max, Wi‐Fi, WLAN, satellite communication in X‐band and for radio location, and astronomy applications.  相似文献   

17.
In this article, a compact half‐hexagonal ultra‐wide band multiple‐input‐multiple‐output (MIMO) antenna is presented. The key feature of the antenna is its novel isolation improvement technique which includes grounded stub along with dual grounded circular ring resonator. The antenna contains two counter facing half‐hexagonal monopoles having hybrid isolation circuit. The antenna has a compact size of 20 × 34 mm2, with operating frequency band of 3‐11 GHz where port isolation is better than 20 dB in most of the band. The MIMO performance is ensured by calculating envelop correlation coefficient and mean effective gain ratio for isotropic, indoor, and outdoor environment. The performance of the antenna with multilayer printed circuit board having large dual ground plane and device housing is also studied. Results show that the proposed MIMO antenna is a good candidate for handheld devices for wireless personal‐area networks application.  相似文献   

18.
This article presents the designs of dual‐polarized dual wideband textile‐based two and four elements multiple‐input multiple‐output (MIMO) antennas for WLAN (IEEE 802.11a/b/g/c/n) and WiMAX (IEEE 802.16d) applications. These MIMO antennas cover the frequency spectra from 1.5 to 3.8 GHz (87% bandwidth) and 4.1 to 6.1 GHz (40% bandwidth). The characterization of the textile jeans substrate is determined experimentally using a vector network analyzer and dielectric assessment kit. These antennas provide near about 70% radiation efficiency with around 4 dBi peak gain in desired frequency ranges. The diversity performance is improved noticeably by printing meandered line structures on both planes. The proposed MIMO structure has a very low envelop correlation coefficient (ECC) <0.1 and high diversity gain (DG) >9.9. The Medium effective gain (MEG) also lies within a satisfactory value of ±3 dB. The two elements MIMO Antennas provide linear polarization at all desired frequency band while the four‐element antenna provides circular polarization at 2.4 GHz and linear polarization at 5.2 and 5.8 GHz application bands. The antenna also depicts good performance in wearable condition with safe specific absorption rate < 1.6 W/kg in all desired frequencies.  相似文献   

19.
A compact planar frequency reconfigurable dual‐band multiple‐input‐multiple‐output (MIMO) antenna with high isolation and pattern/polarization diversity characteristics is presented in this article for WiFi and WiMAX standards. The MIMO configuration incorporates two symmetrically placed identical antenna elements and covers overall size of 24 mm × 24 mm × 0.762 mm. Reconfiguration of each antenna element is achieved by using a PIN diode which allows antennas to switch from state‐1 (2.3‐2.4 GHz and 4.6‐5.5 GHz) to state‐2 (3.3‐3.5 GHz and 4.6‐5.5 GHz). In state‐1, the configuration offers isolation ≥18 dB and 20 dB in lower band (LB) and upper band (UB) respectively; whereas, in state‐2, isolation ≥21 dB and 20 dB in LB and UB respectively is achieved. The same decoupling circuit provides high isolation in dual‐band of two states, which makes overall size of the proposed design further compact. The antennas are characterized in terms of envelope correlation coefficient, radiation pattern, gain, and efficiency. From measured and simulated results, it is verified that the proposed frequency reconfigurable dual‐band multi‐standard MIMO antenna design shows desirable performance in both operating bands of each state and compact size of the design makes it suitable for small form factor devices used in future wireless communication systems.  相似文献   

20.
This paper presents a low profile, triple band antenna system for LTE/WLAN/DSRC applications. It consists of four coplanar waveguide (CPW) fed printed inverted F antennas (PIFAs), each loaded with folded slot antenna (FSA) and folded resonator (FR). The loading of FSA and FR is responsible for the triple band property. An independent/semi‐independent control of each band is observed. Each radiating element is aligned perpendicularly to its adjacent element to employ polarization and pattern diversity. This helps in sustaining a good isolation level in between them without using any additional decoupling networks. The antenna has been fabricated and measured to validate the simulated results. Measurement reveals three 10 dB return loss bandwidths in the ranges 2.47‐2.62 GHz, 3.39‐3.64 GHz, and 5.74‐6.25 GHz, respectively. The isolation levels between the radiators are more than 20 dB at all three operating bands. Respective peak gains are 3.8 dB, 4.5 dB, and 5.3 dB. To gratify the requirement of the diversity performance, some essential attributes like Total Active Reflection Coefficient (TARC), Envelope Correlation Coefficient (ECC), Diversity Gain (DG), Mean Effective Gain (MEG), and Channel Capacity Loss (CCL) are also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号