首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, globally asymptotical stabilization problem for a class of planar switched nonlinear systems with an output constraint via smooth output feedback is investigated. To prevent output constraint violation, a common tangent‐type barrier Lyapunov function (tan‐BLF) is developed. Adding a power integrator approach (APIA) is revamped to systematically design state‐feedback stabilizing control laws incorporating the common tan‐BLF. Then, based on the designed state‐feedback controllers and a constructed common nonlinear observer, smooth output‐feedback controllers, which can make the system output meet the predefined constraint during operation, are proposed to deal with the globally asymptotical stabilization problem of planar switched nonlinear systems under arbitrary switchings. A numerical example is employed to verify the proposed method.  相似文献   

2.
This paper is concerned with the problem of state feedback stabilization for a class of high‐order nonlinear systems with an asymmetric output constraint. A novel asymmetric barrier Lyapunov function (BLF) is first proposed by deliberating the characteristics of the system nonlinearities. Then, the presented BLF, together with a skillful manipulation of sign functions, is utilized to delicately revamp the technique of adding a power integrator, thereby developing a systematic approach that guides us in constructing a continuous state feedback stabilizer and preventing the violation of a pre‐specified asymmetric output constraint during operation. The novelty of this paper is attributed to the development of a unified method that is able to simultaneously tackle the problem of stabilization for high‐order nonlinear systems with and without output constraints in a constructive fashion, without changing the controller structure. An illustrative example is presented to demonstrate the superiority of the proposed approach.  相似文献   

3.
This article investigates the finite‐time output feedback stabilization problem for a class of nonlinear time‐varying delay systems in the p‐normal form. First, a reduced‐order state observer is designed to estimate the unmeasurable state. Then, an output feedback controller is constructed, with the help of the finite‐time Lyapunov stability theorem, it is proved that the state of the resulting closed‐loop system converges to the origin in finite time. Two simulation examples are given to verify the effectiveness of the proposed scheme.  相似文献   

4.
In this paper, an adaptive output‐feedback control problem is investigated for nonlinear strict‐feedback stochastic systems with input saturation and output constraint. A barrier Lyapunov function is used to solve the problem of output constraint. Then, fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the unmeasured states. To overcome the difficulties in designing the control signal in the saturation, we introduce an auxiliary signal in the n + 1th step in the deduction. By combining Nussbaum technique and the adaptive backstepping technique, an adaptive output‐feedback control method is developed. The proposed control method not only overcomes the problem of the compensation for the nonlinear term from the input saturation but also overcomes the problem of unavailable state measurements. It is proved that all the signals of the closed‐loop system are semiglobally uniformly ultimately bounded. Finally, the effectiveness of the proposed method is verified by the simulation results.  相似文献   

5.
In this paper, output‐feedback control strategies are proposed for lower‐triangular nonlinear nonholonomic systems in any prescribed finite time. Specifically, by employing the input‐state–scaling technique, the controlled systems are firstly converted into lower‐triangular nonlinear systems, which makes it possible to study such systems using the high‐gain technique. Then, by introducing a scaling of the state by a function that grows unbounded toward the terminal time and proposing a high‐gain observer–prescribed finite time recovering the system states, the output‐feedback regulation control problem in any prescribed finite time is firstly achieved for nonlinear nonholonomic systems with unknown constant incremental rate. Moreover, by designing another time‐varying high gain, the output‐feedback stabilization control problem in any prescribed finite time is then achieved for nonlinear nonholonomic systems with a time‐varying incremental rate. Finally, a numerical example is introduced to show the effectiveness of proposed control strategies.  相似文献   

6.
This paper focuses on the problem of disturbance attenuation with fast global finite‐time convergence (FTC) for a class of generalized high‐order uncertain nonlinear systems. Combining the fast finite‐time stabilization technique with a delicate manipulation of sign functions, a new control approach is proposed to attenuate the serious uncertainties substantially, including time‐varying control coefficients, nonlinear parameters, and external disturbances, while achieving the performance evaluated in terms of L2L2p gain. A notable feature of the control strategy is the fast FTC, which greatly shortens the convergent time when the initial state is far away from the origin. A numerical example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

7.
This paper studies the finite‐time stabilizing control problem for a class of switched stochastic nonlinear systems (SSNSs) in p‐normal form. The switched systems under consideration possess the powers of different positive rational numbers and the dead‐zone input nonlinearities. Based on the improving finite‐time stability theorem for SSNSs established in this paper, a general framework to address common state feedback for SSNSs is developed by adopting the common Lyapunov function–based adding a power integrator technique. It is proved that the proposed controller renders the trivial solution of the closed‐loop system uniformly finite‐time stable in probability under arbitrary switchings. Finally, simulation results are given to confirm the validity of the proposed approach.  相似文献   

8.
This paper considers the global finite‐time output‐feedback stabilization for a class of uncertain nonlinear systems. Comparing with the existing related literature, two essential obstacles exist: On the one hand, the systems in question allow serious parametric unknowns and serious time variations coupling to the unmeasurable states, which is reflected in that the systems have the unmeasurable states dependent growth with the rate being an unknown constant multiplying a known continuous function of time. On the other hand, the systems possess remarkably inherent nonlinearities, whose growth allows to be not only low‐order but especially high‐order with respect to the unmeasurable states. To effectively cope with these obstacles, we established a time‐varying output‐feedback strategy to achieve the finite‐time stabilization for the systems under investigation. First, a time‐varying state‐feedback controller is constructed by adding an integrator method, and by homogeneous domination approach, a time‐varying reduced‐order observer is designed to precisely rebuild the unmeasurable states. Then, by certainty equivalence principle, a desired time‐varying output‐feedback controller is constructed for the systems. It is shown that, as long as the involved time‐varying gain is chosen fast enough to overtake the serious parametric unknowns and the serious time variations, the output‐feedback controller renders that the closed‐loop system states converge to zero in finite time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a solution to the continuous output‐feedback finite‐time control problem is proposed for a class of second‐order MIMO nonlinear systems with disturbances. First, a continuous finite‐time controller is designed to stabilize system states at equilibrium points in finite time, which is proven correct by a constructive Lyapunov function. Next, because only the measured output is available for feedback, a continuous nonlinear observer is presented to reconstruct the total states in finite time and estimate the unknown disturbances. Then, a continuous output‐feedback finite‐time controller is proposed to track the desired trajectory accurately or alternatively converge to an arbitrarily small region in finite time. Finally, proposed methods are applied to robotic manipulators, and simulations are given to illustrate the applicability of the proposed control approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes a delay‐range‐dependent local state feedback controller synthesis approach providing estimation of the region of stability for nonlinear time‐delay systems under input saturation. By employing a Lyapunov–Krasovskii functional, properties of nonlinear functions, local sector condition and Jensen's inequality, a sufficient condition is derived for stabilization of nonlinear systems with interval delays varying within a range. Novel solutions to the delay‐range‐dependent and delay‐dependent stabilization problems for linear and nonlinear time‐delay systems, respectively, subject to input saturation are derived as specific scenarios of the proposed control strategy. Also, a delay‐rate‐independent condition for control of nonlinear systems in the presence of input saturation with unknown delay‐derivative bound information is established. And further, a robust state feedback controller synthesis scheme ensuring L2 gain reduction from disturbance to output is devised to address the problem of the stabilization of input‐constrained nonlinear time‐delay systems with varying interval lags. The proposed design conditions can be solved using linear matrix inequality tools in connection with conventional cone complementary linearization algorithms. Simulation results for an unstable nonlinear time‐delay network and a large‐scale chemical reactor under input saturation and varying interval time‐delays are analyzed to demonstrate the effectiveness of the proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper considers the problem of almost disturbance decoupling (ADD) via sampled‐data output feedback control for a class of uncertain nonlinear systems subject to time‐delays. Based on output feedback domination approach, a sampled‐data output feedback controller is designed to globally stabilize the system under a lower‐triangular linear growth condition. Gronwall‐Bellman‐like inequality and inductive method are introduced to estimate the state growth in the presence of time‐delays, uncertain nonlinearities and unknown disturbances. The proposed controller can attenuate the influence of disturbances on the output to an arbitrary degree in the L2 gain sense. Finally, simulation results show the effectiveness of the control method.  相似文献   

12.
In this work, we present a novel adaptive finite‐time fault‐tolerant control algorithm for a class of multi‐input multi‐output nonlinear systems with constraint requirement on the system output tracking error. Both parametric and nonparametric system uncertainties can be effectively dealt with by the proposed control scheme. The gain functions of the nonlinear systems under discussion, especially the control input gain function, can be not fully known and state‐dependent. Backstepping design with a tan‐type barrier Lyapunov function and a new structure of stabilizing function is presented. We show that under the proposed control scheme, finite‐time convergence of the output tracking error into a small set around zero is guaranteed, while the constraint requirement on the system output tracking error will not be violated during operation. An illustrative example on a robot manipulator model is presented in the end to further demonstrate the effectiveness of the proposed control scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the robust stabilization problem is addressed for a class of high‐order stochastic nonlinear systems with output constraints and disturbances by using finite‐time control technique. One of the features of the considered stochastic systems is that the fractional powers are allowed to be any positive odd rational numbers, rather than grater than or equal to one. By constructing a novel tan‐type barrier Lyapunov function and using the adding a power integrator technique, the explicit steps on how to construct a backstepping‐like finite‐time controller have been developed to handle the robust stabilization and output constraint. Rigorous mathematical proof shows that the system states will finite‐time converge to a small region of the origin and the output constraint can be kept. Finally, a simulation example is given to illustrate the effectiveness of the proposed approach.  相似文献   

14.
This paper considers the global finite‐time output feedback stabilization of a class of nonlinear high‐order feedforward systems. By using the homogeneous domination method together with adding a power integrator method and overcoming several troublesome obstacles in the design and analysis, a global finite‐time output feedback controller with reduced‐order observer is recursively designed to globally finite‐time stabilize nonlinear high‐order feedforward systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper addresses the problem of designing an Hfuzzy state‐ feedback (SF) plus state‐derivative‐feedback (SDF) control system for photovoltaic (PV) systems based on a linear matrix inequality (LMI) approach. The TS fuzzy controller is designed on the basis of the Takagi‐Sugeno (TS) fuzzy model. The sufficient condition is found such that the system with the fuzzy controller is asymptotically stable and an Hperformance is satisfied. First, a dc/dc buck converter is considered to regulate the power output by controlling state and state‐derivative variables of PV systems. The dynamic model of PV systems is approximated by the TS fuzzy model in the form of nonlinear systems. Then, based on a well‐known Lyapunov functional approach, the synthetic is formulated of an Hfuzzy SF plus SDF control law, which guarantees the L2‐gain from an exogenous input to the regulated output to be less than or equal to some prescribed value. Finally, to show effectiveness, the simulation of the PV systems with the proposed control is assessed by the computer programme. The proposed control method shows good performance for power output and high stability for the PV system.  相似文献   

16.
This paper investigates the problem of finite‐time consensus (FTC) for second‐order nonlinear multi‐agent systems when the velocity information is unavailable. Based on the global finite‐time stability theory and homogeneity with dilation, a class of novel finite‐time consensus protocols are proposed for the multi‐agent systems. The protocol design is divided into two parts. First, when all the state information of the agents are measurable, a new continuous state feedback is designed to achieve FTC. Then, when the velocity information is unmeasurable, two finite‐time convergent discontinuous observers are presented to estimate the velocities of the followers and the leader, respectively, which further ensure the final FTC for the multi‐agent systems. Finally, one example is given to demonstrate the efficiency of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This article addresses the problem of global adaptive finite‐time control for a class of p‐normal nonlinear systems via an event‐triggered strategy. A state feedback controller is first designed for the nominal system by adding a power integrator method. Then, by the skillful design of adaptive dynamic gain mechanism, a novel event‐triggered controller is constructed for uncertain nonlinear system without homogeneous growth condition. It is proved that the global finite‐time stabilization of p‐normal nonlinear systems is guaranteed and the Zeno phenomenon is excluded. Finally, two examples are presented to indicate the effectiveness of the proposed control scheme.  相似文献   

18.
In this article, we address the problem of output stabilization for a class of nonlinear time‐delay systems. First, an observer is designed for estimating the state of nonlinear time‐delay systems by means of quasi‐one‐sided Lipschitz condition, which is less conservative than the one‐sided Lipschitz condition. Then, a state feedback controller is designed to stabilize the nonlinear systems in terms of weak quasi‐one‐sided Lipschitz condition. Furthermore, it is shown that the separation principle holds for stabilization of the systems based on the observer‐based controller. Under the quasi‐one‐sided Lipschitz condition, state observer and feedback controller can be designed separately even though the parameter (A,C) of nonlinear time‐delay systems is not detectable and parameter (A,B) is not stabilizable. Finally, a numerical example is provided to verify the efficiency of the main results.  相似文献   

19.
The output voltage regulation problem of a DC‐DC buck converter is investigated in this paper via an observer‐based finite‐time output‐feedback control approach. Considering the effects of unknown load variations and the case without current sensor, by using the technique of adding a power integrator and the idea of nonseparation principle, a finite‐time voltage regulation control algorithm via dynamic output feedback is designed. The main feature of the designed observer and controller does not need any load's information. Theoretically, it is proven that the output voltage can reach the desired voltage in a finite time under the proposed controller. The effectiveness of the proposed control method is illustrated by numerical simulations and experimental results.  相似文献   

20.
This paper investigates the problem of global output‐feedback stabilization by sampled‐data control for nonlinear systems with unknown measurement sensitivity. By employing the technique of output‐feedback domination, a sampled‐data output‐feedback control law together with a sampled‐data state observer is explicitly constructed. By an exquisite selection of both the domination gain and sampling period, the resultant control law is a globally asymptotic stabilizer even in the presence of unknown measurement sensitivity. The novelty of this paper is the development of a distinct approach which can tackle the problem of output‐feedback stabilization for the nonlinear systems with unknown measurement sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号