首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high‐isolation dual‐polarized quad‐patch antenna fed by stacked substrate integrated waveguide (SIW) that is suitable for millimeter‐wave band is proposed in this paper. The antenna consists of a quad‐patch radiator, a two‐layer SIW feeding structure and two feeding ports for horizontal and vertical polarization. The two‐layer stacked SIW feeding structure achieves the high isolation between the two feeding ports (|S21| ≤ ?45 dB). Based on the proposed element, a 1 × 4 antenna array with a simple series‐fed network is also designed and investigated. A prototype working at the frequency band from 38 to 40 GHz is fabricated and tested. The results indicate that the proposed antenna has good radiation performance at 38 GHz that covers future 5G applications.  相似文献   

2.
In this article, a circularly polarized coupled slot 1 × 4 stacked patch antenna array with enhanced bandwidth is proposed for S‐band applications. Initially, a patch antenna radiating at 2.79 GHz is designed and maximum energy from feedline to patch element is coupled using two rectangular slots. Whereas, a parallel feedline structure is designed to provide polarization flexibility by creating 0, 90 , and 180o phase differences. Then, a truncated patch element is vertically stacked in the design to achieve broader bandwidth of 600 MHz over frequency range from 2.4 to 3.0 GHz. Finally, a coupled slot 1 × 4 array stacked antenna array having feedline line structure to provide 90o phase difference for circular polarization is designed and fabricated for measurements. It is observed that the final design achieved target specification having impedance matching (|S11 | (dB) < ?10 dB over 2.4 to 3.0 GHz, broad band circular polarization, and 11.5 dBic total gain. Overall, a good agreement between simulated and measurement results is observed.  相似文献   

3.
This paper demonstrates the design procedure of a 4 × 8 phased array antenna. Initially, a unit element in multilayer topology with orthogonal slots in the ground plane to couple electromagnetic energy is designed. Then, a stacked patch with truncated edges is placed on the top thick substrate layer to enhance the bandwidth to 600 MHz. This multilayered stacked patch unit element is then used to design a 1 × 4 and 4 × 8 slot coupled stacked patch array. On the bottom side, a novel feedline structure is designed to provide a 90 o phase difference at the antenna feed for the circular polarization. The phase difference is achieved in the feedline structure using a quarter wavelength ( λg/4 ) difference in the lengths. After the numerical validation, both 1 × 4 and 4 × 8 stacked patch antenna arrays are fabricated to validate the simulations. The final 4 × 8 array achieved the target specification of an active reflection of less than ?10 dB over 2.4 to 3.0 GHz, axial ratio of less than 3 dB, and stable radiation pattern over the complete band. In addition, beam scanning characteristics of the proposed stacked patch antenna arrays are also verified. The prototype resulted a peak gain of 19.5 dB at 2.7 GHz, 3‐dB beamwidth around 12 o in the xz‐plane, and scanning range of 90 o . Overall, good agreement between measured and simulated results showed that the proposed designed array capable of providing 600 MHz is an excellent candidate for the radar communication, small commercial drones, and synthetic aperture radar applications.  相似文献   

4.
In this work, we propose a circularly polarized (CP) beam‐switching wireless power transfer system for ambient energy harvesting applications operating at 2.4 GHz. Beam‐switching is achieved using a low profile, electrically small CP antenna array with four elements and a novel miniaturized 4× 4 butler matrix. The CP antenna is designed with an e‐shaped slot and four antennas. The CP antenna measures 0.32 λ0× 0.32 λ0× 0.006 λ0 at 2.4 GHz. The antenna has a gain of 3 dBic and an axial ratio less than 3‐dB at 2.4 GHz. A linear antenna array consisting of four elements is designed with the CP antenna element with an inter‐element distance of 0.29 λ0 . A 4× 4 butler matrix with miniaturized couplers and crossovers are used to feed the four antenna array elements. Based on the input port of excitation, the main beam of the antenna array is demonstrated to be switched to four directions: ?5°, 65°, ?55°, and 20°. A CP rectenna is used to demonstrate the wireless power transfer capability of the combination of the butler matrix and the CP‐antenna array. The rectenna consists of a Teo‐shaped CP antenna and a rectifier. The open circuit voltage at the output of the rectenna is found to peak value of 30 mV at ?3°, 61°, ?53°, and 17°. Thus a complete system for CP wireless power transfer including the power transmission system as well as the RF energy harvesting sensor is designed and experimentally verified.  相似文献   

5.
This article reports a high gain millimeter‐wave substrate integrated waveguide (SIW) antenna using low cost printed circuit board technology. The half elliptic slots which can provide small shunt admittance, low cross polarization level and low mutual coupling are etched on the board surface of SIW as radiation slots for large array application. Design procedure for analyzing the characteristics of proposed radiation slot, the beam‐forming structure and the array antenna are presented. As examples, an 8 × 8 and a 32 × 32 SIW slot array antennas are designed and verified by experiments. Good agreements between simulation and measured results are achieved, which shows the 8 × 8 SIW slot array antenna has a gain of 20.8 dBi at 42.5 GHz, the maximum sidelobe level of 42.5 GHz E‐plane and H‐plane radiation patterns are 22.3 dB and 22.1 dB, respectively. The 32 × 32 SIW slot array antenna has a maximum measured gain of 30.05 dBi at 42.5 GHz. At 42.3 GHz, the measured antenna has a gain of 29.6 dBi and a maximum sidelobe level of 19.89 dB and 15.0 dB for the E‐plane and H‐plane radiation patterns. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:709–718, 2015.  相似文献   

6.
Wireless power transfer has been the field of research for many decades, and with technological advancement and increase in wireless mobile devices, the future of wireless power transfer technology is very promising. The major requirement of wireless power transfer is an efficient and compact antenna array with high gain and flawless scanning performance. In this article, a 4 × 8 element array is proposed with a gain of 18 dB and scanning capability of ±45° in azimuth and elevation plane at 5.8 GHz. The overall size of the array is 100 mm × 200 mm. The element separation in the array is only 0.48 λ. There was strong mutual coupling due to smaller separation, which has been minimized with the application of via‐fence around the antenna element. A dual feed circularly polarized annular slot‐ring antenna is proposed and analyzed with via‐fence to develop an array of 4 × 8 elements. The antenna array reflection coefficient obtained is less than 20 dB for different scan angles and the gain of the array obtained is also within 2 dB for ±45° scan angles.  相似文献   

7.
This article presents two compact circularly polarized microstrip antennas with a very wide 3 dB axial ratio bandwidth and triple circularly polarized bands. A hexagonal stub (circular polarization element) along with tuning element in the ground plane is used for achieving wide 3 dB ARBW in antenna‐1, while a novel approach of using a parasitic strip around the circular polarization element is used in antenna‐2 for introducing band elimination notches in the circularly polarized band of antenna‐1. The antenna‐1 has a ?10 dB impedance bandwidth of 12.34% (3.8‐4.3 GHz), 84.02% (4.9‐12 GHz), and 3 dB ARBW of 79.94% (4.9‐10.9 GHz). The antenna‐2 displays circularly polarized band elimination notch characteristics with ?10 dB impedance bandwidth of 24.80% (3.85‐4.94 GHz), 31.72% (6.1‐8.4 GHz), 25.35% (9.3‐12 GHz), and 3 dB ARBW of 4.84% (4.63‐4.86 GHz), 19.08% (6.02‐7.29 GHz), and 5.7% (9.54‐10.1 GHz). Both the antennas are designed and fabricated on FR4 substrate of dimension (0.52 × 0.52 × 0.04)λ0 at a frequency of 7.9 GHz.  相似文献   

8.
A slot antenna with wideband circular polarization (CP) array, which operates on millimeter waves band, is proposed. A four‐direction sequential rotation technique is used in the feed network to feed the 2 × 2 slot element based on waveguide. The shot element resonates at both the fundamental mode and the high‐order mode. The slot element is studied in high order mode, and the radiation lobe can be redirected by changing the size of the slot element, thus improving the multi‐lobe problem. A strong single lobe is formed in the +z‐direction by using the ground edge diffraction characteristics of the slot element in the waveguide. The designed broadband characteristics are obtained through the appropriate combination of the feed network and CP antenna. The prototype of the antenna with an overall size of 137 mm × 137 mm × 0.6 mm3 is processed and verified by experiments. The prototype of the slot array is processed and examined. The test results display that the device has good performance of |S11| < ?10 dB bandwidth of 3.72 to 6.56 GHz (2.84 GHZ, 55.25%), a 3 dB axial ratio bandwidth of approximately 4.39 to 5.43 GHz (21.18%).  相似文献   

9.
This article presents the design and implementation of a single‐layer wideband millimeter‐wave circularly polarized (CP) monopulse cavity‐backed antenna based on substrate integrated waveguide (SIW) technology. The antenna consists of a 2× 8 array of CP cavity‐backed antenna elements, a 90° 3‐dB coupler, power dividers, and phase shifters. In order to enhance the operating bandwidths, the sequential rotation feeding technology is adopted in the design of the monopulse antenna. To validate the proposed concept, a prototype operating at 42 GHz was fabricated and measured. The measured 3‐dB axial ratio (AR) bandwidth for the sum beam can cover a frequency range from 37 to 46 GHz. The measured gain for the sum beam at the center frequency of 42 GHz is 17.5 dBiC, while the null‐depth of the difference beam is measured to be ?36.8 dB. The proposed monopulse antenna has advantages of low‐cost, easy‐fabrication, and easy integration with planar circuits.  相似文献   

10.
A planar broadband circularly polarized (CP) X‐band array antenna with low sidelobe and high aperture efficiency is presented for small satellite applications. The array design is composed of 4 × 4 broadband CP stacked patch elements, which are fed by a feeding network consisted of unequal series‐parallel power dividers to achieve the low sidelobe and high aperture efficiency. The final prototype with overall size of 100 mm × 100 mm × 3 mm (2.73λ0 × 2.73λ0 × 0.082λ0 at 8.2 GHz) was fabricated and measured. The antenna has a broadband characteristic with |S11| < ?10 dB bandwidth of 15.9% (7.52‐8.82 GHz) and 3‐dB axial ratio bandwidth of 11.95% (7.63‐8.60 GHz). Also, it achieves an excellent broadside CP radiation with a gain of 17.2‐20.03 dBic, a sidelobe level of <?20 dB, and aperture efficiency of 65% to 97.5%. With these features, the proposed antenna is a good candidate for high‐speed data downlink onboard small satellites (MiniSat, MicroSat, NanoSat, and CubeSat).  相似文献   

11.
A broadband high‐gain circularly polarized (CP) microstrip antenna operating in X band is proposed. The circular polarization property is achieved by rotating four narrow band linearly polarized (LP) microstrip patch elements in sequence. Since the conventional series‐parallel feed network is not conducive to the miniaturization of the array, a corresponding simplified feed network is designed to realize the four‐way equal power division and sequential 90° phase shift. With this feed network, the impedance bandwidth (IBW) of the CP array is greatly improved compared with that of the LP element, while maintaining a miniaturized size. Then, parasitic patches are introduced to enhance the axial ratio bandwidth (ARBW). A prototype of this antenna is fabricated and tested. The size of proposed antenna is 0.93λ0 × 0.93λ0 × 0.017λ0 (λ0 denotes the space wavelength corresponding to the center frequency 10.4 GHz). The measured 10‐dB IBW and 3‐dB ARBW are 13.6% (9.8‐11.23 GHz), 11.2% (9.9‐11.07 GHz) respectively, and peak gain in the overlapping band is 9.8 dBi.  相似文献   

12.
This article presents a 2 × 2 series fed 2.4 GHz patch antenna array having multiple beam switching capabilities by using two simple 3 dB/90° couplers to achieve required amplitude and phase excitations for array elements with reduced complexity, cost and size. The beam switching performance with consistent gain and low side lobe levels (SLL) is achieved by exciting the array elements from orthogonally placed thin quarter‐wave (λg/4) feeds. The implemented array is capable to generate ten (10) switched‐beams in 2‐D space when series fed elements are excited from respective ports through 3 dB quadrature couplers. The dual polarized characteristics of presented array provide intrinsic interport isolation between perpendicularly placed ports through polarization diversity to achieve independent beam switching capabilities for intended directions. The implemented antenna array on 1.575 mm thick low loss (tan δ = 0.003) NH9450 substrate with εr = 4.5 ± 0.10 provides 10 dB return loss impedance bandwidth of more than 50 MHz. The measured beam switching loss is around 0.8 dB for beams switched at θ = ±20°, Ф = 0°, 90°, and 45° with average peak gain of 9.5 dBi and SLL ≤ ?10 dB in all cases. The novelty of this work is the capability of generating ten dual polarized switched‐beams by using only two 3 dB/90° couplers as beam controllers.  相似文献   

13.
A simple design of circularly polarized slot‐patch antenna array with broadband operation and compact size is presented in this article. The antenna element consists of a circular slot and a semicircular patch, which are etched on both sides of a substrate. For the gain and axial ratio (AR) bandwidth enhancement, its array antennas are implemented in a 2 × 2 arrangement and fed by a sequential‐phase feeding network. The final 2 × 2 antenna array prototype with compact lateral dimension of 0.8λL × 0.8λL (λL is the lowest frequency within AR bandwidth) yielded a measured impedance bandwidth of 103.83% (2.76‐8.72 GHz) and a measured AR bandwidth of 94.62% (2.45‐6.85 GHz). The peak gain values within the AR bandwidth are from 2.85 to 8.71 dBi. A good agreement between the simulated and measured results is achieved. This antenna array is suitable for multiservice wireless systems covering WiMAX, WLAN and C‐band applications such as satellite communications.  相似文献   

14.
This article presents a dual polarized, proximity‐fed monostatic patch antenna (single radiator for both transmit and receive modes) with improved interport isolation for 2.4 GHz in‐band full duplex (IBFD) applications. The proximity‐fed radiating patch offers comparatively wider impedance bandwidth for presented design. Very nice self‐interference cancelation (SIC) levels for intended impedance bandwidth have been achieved through differential receive (Rx) mode configuration. The differential Rx mode based on 180° ring hybrid coupler acts as a signal inversion mechanism for effective suppression or cancelation of in‐band self‐interference (SI) that is, the leakage from transmit port. The implemented prototype of proposed antenna achieves ≥87 dB peak isolation for dual polarized IBFD operation. Moreover, the recorded interport isolation for validation model ≥60 dB within 10 dB‐return loss bandwidth of 90 MHz (2.36‐2.45 GHz). The measured radiation characteristics of implemented antenna demonstrate nice gain and low cross‐polarization levels for both transmit (Tx) and receive (Rx) modes. The dimensions of implemented antenna are 70 × 75 × 4.8 mm3. The novelty of this work is wide‐band SIC performance for monostatic antenna configuration with compact structure of presented design.  相似文献   

15.
A planar and compact substrate integrated waveguide (SIW) cavity backed antenna and a 2 × 2 multi‐input multi‐output (MIMO) antenna are presented in this study. The proposed antenna is fed by a grounded coplanar waveguide (GCPW) to SIW type transition and planned to be used for millimeter‐wave (mm‐wave) fifth generation (5G) wireless communications that operates at 28, 38, 45, and 60 GHz frequency bands. Moreover, the measured impedance bandwidth (|S11| ≤ ? 10 dB ) of the antenna covers 27.55 to 29.36, 37.41 to 38.5, 44.14 to 46.19, and 57.57 to 62.32 GHz bands and confirms the quad‐band characteristic. Omni‐directional radiation characteristics are observed in the far‐field radiation pattern measurements of the antenna over the entire operating frequency. The reported antenna is compact in size (9.7 × 13.3 × 0.6 mm3) and the gain values at each resonance frequency are measured as 3.26, 3.28, 3.34, and 4.51 dBi, respectively. Furthermore, the MIMO antenna performance is evaluated in terms of isolation, envelope correlation coefficient and diversity gain.  相似文献   

16.
A miniature LTCC system‐in‐package (SiP) module has been presented for millimeter‐wave applications. A typical heterodyne 61 GHz transmitter (Tx) has been designed and fabricated in a type of the SiP module as small as 36 × 12 × 0.9 mm3. Five active chips including a mixer, driver amplifier, power amplifier, and two frequency multipliers were mounted on the single LTCC package substrate, in which all passive circuits such as a stripline (SL) BPF, 2 × 2 array patch antenna, surface‐mount technology (SMT) pads, and intermediate frequency (IF) feeding lines have been monolithically embedded by using vertical and planar transitions. The embedded SL BPF shows the center frequency of 60.8 GHz, BW of 4.1%, and insertion loss of 3.74 dB. The gain and 3‐dB beam width of the fabricated 2 × 2 array patch antenna are 7 dBi and 36 degrees, respectively. The assembled LTCC 61 GHz Tx SiP module achieves an output power of 10.2 dBm and an up‐conversion gain of 7.3 dB. Because of the integrated BPF, an isolation level between a local oscillation (LO) and RF signal is below 26.4 dBc and the spurious level is suppressed by lower than 22.4 dBc. By using a 61 GHz receiver (Rx) consisting of off‐the‐shelf modules, wireless communication test was demonstrated by comparing measured IF spectrums at the Tx and Rx part.  相似文献   

17.
In this article, we investigate bandwidth‐enhancement of a circularly‐polarized (CP) Fabry‐Perot antenna (FPA) using single‐layer partially reflective surface (PRS). The FPA is composed of a single‐feed truncated‐corner square patch antenna, which is covered by the PRS formed by a square aperture array. We revealed that the finite‐sized PRS produces extra resonances and CP radiations for the antenna system, which broadened the impedance matching and axial ratio (AR) bandwidths significantly. For verification, a broadband CP FPA prototype operating near 5.8 GHz was realized and tested. The fabricated antenna with overall size of 125 mm × 125 mm × 23.5 mm achieves a |S11| < ?10 dB bandwidth of 31.7% (5.23‐7.2 GHz), an AR < 3‐dB bandwidth of 13.7% (5.45‐6.25 GHz), the peak gain of 13.3 dBic, a 3‐dB gain bandwidth of 22.38% (5.0‐6.26 GHz), and a radiation efficiency of >91%.  相似文献   

18.
This article reports the design and analysis of a wideband, single layer, and dual‐polarized microstrip reflectarray for Ku‐band applications. The array element is constructed using a crossed dipole enclosed by two cross dipole loops. The element is optimized to exhibit a linear phase response and wide reflection phase range. The reflection characteristic of the unit cell is analyzed using an infinite array approach and the results are presented. A 324‐element Ku‐band microstrip reflectarray antenna of size 20 × 20 cm2 is simulated, fabricated, and experimentally evaluated. The 2.9‐dB gain‐bandwidth and aperture efficiency of the reported reflectarray are 45.3% and 35%, respectively. The reflectarray operates in the frequency range of 10.6 to 16.8 GHz.  相似文献   

19.
A compact slot antenna with an overall dimension of 30 × 30 × 1.6 mm3 is proposed for dual band applications. The radiating element is a hexagonal shape patch which protrudes from a Co‐Planar Waveguide (CPW) feed into a step shape slot. The slot is basically rectangular in shape and is extended by inserting rectangular cuts of different sizes on the ground plane around it. The ultrawide impedance bandwidth is achieved using asymmetric feed line along with extended rectangular cuts around the slot. For realizing the second band for personal communication system applications (near 1.9 GHz), a metallic stub of quarter wave length is attached at the top of the slot. The measured impedance bandwidth (for S11 < ?10 dB) is 110 MHz (1.86–1.97 GHz) for the first band and 9 GHz (3.0–12.0 GHz) for the second band. The antenna is further characterized by omnidirectional radiation patterns in the H‐plane, dumb‐bell shape radiation patterns in the E‐plane and a peak gain of 3–5 dBi over the ultrawideband. All the measured results are found to be in good agreement with the simulated results. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:243–254, 2015.  相似文献   

20.
In this article, a broadband quasi‐Yagi array of rectangular loops using low‐temperature co‐fired ceramic technology is proposed. The antenna is fed by a simple and compact microstrip‐to‐coplanar strip transition, which serves as balun and impedance transformer simultaneously. Four rectangular loops are used to direct the antenna propagation toward the end‐fire direction. Compared with the planar directors in traditional quasi‐Yagi antenna, they can provide better director effect to improve the radiation performance. Furthermore, they act as good impedance matching elements to broaden the bandwidth. The measured results show that the proposed antenna achieves a wide bandwidth of 42% for S11 < ?10 dB (from 26.1 to 40 GHz), better than 12 dB front‐to‐back ratio, smaller than 14 dB cross polarization and an average gain over 6.5 dBi across the operating bandwidth. The antenna occupies a compact size of 8 × 8 × 1 mm3. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:196–203, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号