首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A leaky‐wave antenna (LWA) with high gain and wide beam‐scanning angle is proposed in this article using a novel substrate integrated waveguide (SIW) composite left/right‐handed transmission line (CRLH TL). The novel SIW‐CRLH TL is analyzed and the equivalent circuit model is also provided. Considering the continuous phase constant of the balanced SIW‐CRLH TL from negative to positive values, the proposed LWA can obtain a continuous beam steering property from backward to broadside to forward. For verification, a periodic LWA, which is comprised of 10 unit cells of the balanced SIW‐CRLH TL, is fabricated and measured. The measured and simulated results agree well, showing that the proposed periodic LWA operates from has continuous beam‐scanning capabilities of about 90° from backward to forward (including the broadside) with gains of better than 10 dB within the operating band. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:36–41, 2016.  相似文献   

2.
In this article, a wideband leaky‐wave antenna is designed for consistent gain and wide beam scanning angle by using the proposed multilayered substrate integrated waveguide (SIW) composite right/left‐handed transmission line (CRLH TL). The proposed SIW CRLH structure consists of two parts: an interdigital fingers slot of rotating 45° etched on the upper ground of the SIW, and a rotated parasitic patch beneath the slot. Due to the continuous phase constants change from negative to positive values of the proposed SIW‐CRLH under the balanced condition, the designed LWA can achieves a continuous beam‐scanning property from backward to forward over the operating frequency band. The designed antenna is fabricated and measured, the measured and simulated results are in good agreements with each other, indicating that the designed antenna obtains a measured continuous main beam scanning from backward ?78° to forward +76° over the frequency range from 7.7 to 12.8 GHz with a consistent gain of more than 9.5 dB. Besides, the designed antenna also exhibits a measured 3‐dB gain bandwidth of 45.1% with maximum gain of 15 dB. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:731–738, 2016.  相似文献   

3.
In this article, a dual‐band beam scanning antenna with filtering capability is proposed by using novel dual‐eighth mode substrate integrated waveguide‐based dual‐band metamaterial (DB‐MTM) structure. The novel DB‐MTM structure consists of two interconnected modified eighth mode substrate integrated waveguide (EMSIW) structures, which is designed by etching four interdigital fingers on the upper ground, and has two balanced composite right/left‐handed (CRLH) passbands. Taking advantage of the continuous phase constant changing from negative to positive values within the two CRLH passbands of the DB‐MTM structure, a beam scanning antenna, which is composed of 11 dB‐MTM unit cells, is designed to achieve continuous beam scanning from backward to forward directions within dual operating frequency bands. For verification, the proposed dual‐band antenna is fabricated and measured. According to the measurements, the fabricated antenna can scan its main beam from ?72° to +57° and ?70° to +38° over the two operating frequency bands of 3.40‐4.95 GHz and 5.85‐6.80 GHz, respectively; and exhibits very sharp transitions at the band edges over the two operating frequency bands. Besides, the measured peak gains in the two operating bands are 14.0 dB at 4.5 GHz and 14.5 dB at 6.4 GHz. Moreover, the measurements show good agreement with the simulations, proving the validity of the design method, and further expanding the applications of EMSIW.  相似文献   

4.
Continuous scanning leaky‐wave antenna (LWA) based on second‐mode spoof surface plasmon polaritons (SSPPs) excitation has been proposed and validated in this article. Different from the existing modulation methods, connecting axisymmetric rectangular modulation is adopted to excite the ?first harmonic. In this way, the slow‐wave bound on the surface of the transmission line is converted into a radiation wave in space. To the authors' knowledge, this is the first presentation of LWA design utilizing second‐mode SSPPs excitation. In the range from 5.0 to 9.0 GHz, the proposed LWA realizes continuous scanning from ?54° ~ 11° with a quasi‐omnidirectional beam in the vertical plane. A prototype of the proposed antenna is fabricated and measured, and the measured results show good agreement with the simulated. The proposed LWA has potential applications in communication systems and radars.  相似文献   

5.
In this study, a wideband dual‐element leaky‐wave antenna (DE‐LWA) is proposed to achieve constant gain and wideband broadside radiation by using multilayered composite right/left‐handed substrate integrated waveguide. The proposed DE‐LWA consists of two leaky‐wave radiator elements which are with slanted and vertical interdigital fingers slot arrays. To verify the simulated results, the proposed DE‐LWA is fabricated and measured. The measured results are in good agreement with the simulated ones, indicating that the fabricated antenna obtains broadside gain of 12.5 dB with variation of 1.0 dB over the frequency range of 8.725‐9.25 GHz (5.84%). Moreover, the proposed DE‐LWA also can provides a beam scanning property from backward ?80° to forward +80° over the frequency range from 7.4 to 12.7 GHz with a constant gain of more than 10 dB. Besides, the electromagnetic performances of this work are better than those of the recently reported similar work in the references.  相似文献   

6.
A wideband beam scanning circularly polarized (CP) leaky‐wave antenna (LWA) at Ku band is proposed based on the printed ridge gap waveguide (PRGW). In this design, the printed technology is used to realize the ridge gap waveguide (RGW) structure, and a substrate layer is introduced to replace the air gap layer in conventional RGWs. The proposed beam scanning CP LWA has been fabricated. Measured results of the fabricated antenna prototype are carried out to verify the simulation analysis. It provides a wide impedance bandwidth of 22% ranging from 12 to 15 GHz while performing continuous frequency beam scanning from ?2° to +47°. Furthermore, it maintains the excellent CP characteristic with axial ratio (AR) below 1.5 dB and a flat gain response with variation less than 2 dB in the entire operation frequency band.  相似文献   

7.
In this article, a novel electrically small eighth‐mode substrate integrated waveguide (EMSIW) based leaky‐wave antenna (LWA) in planar environment is presented. The proposed antenna uses 1/8th mode SIW resonator which helps to improve compactness of the design while maintaining high gain and increased scanning angle. The proposed SIW cavity is excited by a 50 Ω microstrip line feeding to resonate at dominant TE110 mode in X‐band. The dimensions of the resonators are adjusted to keep resonant mode at same frequency. The fabricated prototype is approximately 5λ0 long. Measured results show that the proposed leaky‐wave antenna is able to operate within frequency range of 8‐10 GHz with beam scanning range of 51° and maximum gain of 13.31 dBi.  相似文献   

8.
In this article a circularly polarized (CP) leaky‐wave antenna (LWA) based on spoof surface plasmon (SSP) is proposed. Corrugated circular patches are loaded on either side of the SSP waveguide periodically and asymmetrically, which enables continuous CP beam steering from backward to forward quadrant eliminating “the open stopband” at broadside. The antenna exhibits an impedance bandwidth of 43.5% (<?10 dB) and a 3‐dB axial‐ratio bandwidth of 27.8%; within the impedance bandwidth from 4.5 to 7 GHz the radiation beam can be steered from 120° to 70°. With a ground plane placed underneath, the antenna can achieve average radiation gain and efficiency of about 10 dBic and 84.2%, respectively, showing a radiation gain increase of about 3 dB over that without a ground plane. The proposed SSP‐based CP LWA is expected to find applications in wireless communication systems based on planar antennas.  相似文献   

9.
A wide‐beam circular polarization (CP) antenna and a wide‐angle scanning phased array based on novel polarization rotation reflective surface (PRRS) are proposed. The CP wide‐beam pattern is obtained by the combination of the radiation wave from the patch antenna and the orthogonal reflected wave from the PRRS with a 90° phase difference. The proposed CP wide‐beam antenna obtains the patterns with the 3‐dB beamwidth more than 136° and the axial ratio (AR) beamwidth more than 132° in the xoz‐plane. Furthermore, an eight‐element phased array based on the wide‐beam CP antenna element is also developed. The measured results show that the main beam of the array can scan from ?65° to 65° with a gain fluctuation less than 3 dB and the ARs at every scanning angle less than 3 dB.  相似文献   

10.
A novel nematic liquid crystal (LC) technology‐based electronically controlled leaky wave antenna (LWA) with microstrip‐waveguide conversion working mechanism and wide beam steering range is presented in this article. The LWA is a combination of an inverted microstrip structure and rectangular waveguide. According to the characteristics of LC materials in microwave band, a broadband microstrip‐waveguide conversion device is proposed. The gradient slot leaky wave structure is combined with the microstrip‐waveguide conversion device to form an electronically controlled LWA with continuous tunable beam. Simulation and experiment results show that the LWA proposed in this article has a 32° beam scanning range at 12 GHz and good impedance matching and stable gain, suggesting the great potential of nematic LC materials for extensive applications in microwave band in the future.  相似文献   

11.
In this article, a compact dual layer leaky wave antenna array is simulated and constructed using the substrate integrated waveguide (SIW) based on the TE20 mode at the X‐ and Ku‐bands. The proposed antenna is designed by creating dumbbell‐shaped slots on the upper layer of the SIW. These slots have increased the antenna bandwidth so that the proposed antenna has a bandwidth of 9.5 to 13.7 GHz and a fractional bandwidth of 36%. In addition, to excite the TE20 mode, an SIW power divider is used in the feeding network of the antenna located in the bottom layer. Moreover, the gain and directivity are other advantages of the proposed antenna so that at 12.5 GHz the antenna peak gain reaches to 15.7 dB. Antenna beam scanning angle is from 5° to 81°. This antenna is simulated and analyzed by the CST Microwave Studio software. The obtained results from the antenna test lab confirm the simulation results.  相似文献   

12.
This article presented a substrate integrated waveguide (SIW) cavity‐backed self‐diplexing antenna array with frequency beam scanning characteristic. The proposed array consists of 16 SIW cavity‐backed slot antennas. The SIW cavity‐backed slot antenna can be fed by two separate ports to resonate at two different frequencies and achieve high isolation better than 20 dB between two input ports. The proposed element is a typical self‐diplexing antenna. These cavity‐backed slot antennas are shunt‐fed by a compact 1 to 16 SIW power divider and series‐fed by a set of microstrip lines, respectively. As a result, this array achieves an unidirectional radiation pattern at 10.2 GHz with high gain of 15.10 dBi, and a frequency beam scanning characteristic from 7.0 to 9.0 GHz ranging from ?50° to 46°.  相似文献   

13.
This article presents the design of a grid array antenna with pattern reconfigurable ability. Discussion of various factors that affect the radiation pattern is presented. Interdigital structure, which serves as short radiation line of grid array antenna is then introduced to reconfigure radiation pattern. Change of main beam direction is realized via state change of PIN diodes loaded in interdigital structure and variation of feed point. The scanning angle varies from ?33° to +38° and the average gain is about 10 dBi. The proposed antenna was fabricated and measured. Measured results show the proposed antenna possesses good beam‐scanning characteristics and has potential value in long‐distance power supply for various passive nodes.  相似文献   

14.
A beam scanning Fabry‐Pérot cavity antenna (FPCA) for 28 GHz‐band is presented in this article. The proposed antenna consists of a slot‐fed patch antenna and several layers of perforated superstrates with different dielectric constant. The beam of the antenna can be controlled by moving the superstrate over the antenna. By increasing the offset between the feeding antenna and the superstrate, a larger tilt angle can be obtained. The size of the antenna is 0.95λ0 × 0.95λ0 × 0.48λ0 at 28.5 GHz. The results show the proposed antenna achieves an impedance bandwidth (S11 < ‐10 dB) of 10.5% (27.2‐30.2 GHz), and the beam can be scanned from 0° to 14° in the yoz‐plane with the offset changed from 0 mm to 2 mm. The gain of the antenna is enhanced by 5 dBi in comparison with the feeding antenna without the superstrate, which ranges from 10.91 to 11.53 dBi with the different offset. The proposed antenna is fabricated and shows a good agreement with simulated result.  相似文献   

15.
A method to enhance the gain of substrate integrated waveguide (SIW) beam scanning antenna is proposed in this article. 2 × 2 SIW cavity‐backed sub‐arrays are employed in array design. The antenna is constructed on two layers. The top layer places four SIW cavity‐backed sub‐arrays as radiating elements and the bottom layer is an SIW transmission line to feed the sub‐arrays. Beam scanning feature can be obtained due to the frequency dispersion. Moreover, through separating radiators to the other layer and using 2 × 2 SIW cavity‐backed sub‐arrays as radiating parts, the antenna gain is improved significantly. For a linear array, 4.1 to 6.8 dB gain enhancement is achieved compared to a conventional SIW beam scanning antenna with the same length. Then, the linear array is expanded to form a planar array for further gain improvement. A 64‐element planar beam scanning array is designed, fabricated, and tested. Experimental results show that the proposed planar array has a bandwidth from 18.5 GHz to 21. 5 GHz with beam scanning angle from ?5° to 11.5° and gain in the range of 20.5 to 21.8 dBi. The proposed high gain beam scanning antennas have potential applications in radar detection and imaging.  相似文献   

16.
In this work, a broadband traveling wave antenna (TWA) is presented as a microstrip design that is capable of a wide range of beam scanning by changing the operation frequency within 8 to 14 GHz. For this purpose, a rhombus shaped microstrip patch is used as a unit element and TWA is built as a tapered microstrip line consisting of the cascaded rhombus shaped unit elements and terminated by a rectangular antenna instead of traditional resistive termination which can be called patch loaded traveling wave antenna (PLTWA). Optimization and simulation of the PLTWA is carried out using 3‐D Microwave simulation software CST and its dimensions are resulted as 130 × 30 mm. From the simulations, it should be noted that the patch termination increases the maximum gain almost 3 dB and the total efficiency up to 90% compared to the traditional resistive load over the operation band at the expanse of a small distortion on S11 characteristics. Then the PLTWA is fabricated and measured along its operation band 8 to 14 GHz and it exhibits a peak gain of 9.5 dBi at 11 GHz. The measured gain of the proposed antenna is found between 9 dB and 12 dB and its beam direction is steerable with the range of 80° (?65°‐15°) over the operation band 8 to 14°GHz.  相似文献   

17.
In this article, a metamaterial‐based broadband low‐profile antenna is presented. The proposed antenna employed an array of uniplanar quasi‐composite right/left‐hand (CRLH) metamaterial cells. This structure contributes to exciting the operating modes in lower frequencies. The antenna has an overall electrical size of 0.75 × 0.60 × 0.07 λ030 is the center operating wavelength in free space) and provides a 25% measured bandwidth with the center frequency of 5.1 GHz and maximum gain of 6.6 dB. The proposed antenna is an appropriate candidate for WLAN, WiMAX, and other wireless communication applications.  相似文献   

18.
This article presents a 2 × 2 series fed 2.4 GHz patch antenna array having multiple beam switching capabilities by using two simple 3 dB/90° couplers to achieve required amplitude and phase excitations for array elements with reduced complexity, cost and size. The beam switching performance with consistent gain and low side lobe levels (SLL) is achieved by exciting the array elements from orthogonally placed thin quarter‐wave (λg/4) feeds. The implemented array is capable to generate ten (10) switched‐beams in 2‐D space when series fed elements are excited from respective ports through 3 dB quadrature couplers. The dual polarized characteristics of presented array provide intrinsic interport isolation between perpendicularly placed ports through polarization diversity to achieve independent beam switching capabilities for intended directions. The implemented antenna array on 1.575 mm thick low loss (tan δ = 0.003) NH9450 substrate with εr = 4.5 ± 0.10 provides 10 dB return loss impedance bandwidth of more than 50 MHz. The measured beam switching loss is around 0.8 dB for beams switched at θ = ±20°, Ф = 0°, 90°, and 45° with average peak gain of 9.5 dBi and SLL ≤ ?10 dB in all cases. The novelty of this work is the capability of generating ten dual polarized switched‐beams by using only two 3 dB/90° couplers as beam controllers.  相似文献   

19.
In this work, we propose a full‐wave numerical approach for efficient analysis and design of printed leaky‐wave phased arrays. The proposed technique is based on the method of moments in the spectral domain applied to a leaky structure in a periodic environment. The implementation exploits suitable analytical manipulations to strongly improve numerical convergence. Planar array configurations based on microstrip leaky lines have been considered in detail for accurate evaluations of the relevant dispersion and radiation properties. The effects of phase‐shifted feeding of leaky lines have particularly been investigated as a function of the involved physical parameters, to achieve fundamental information on the beam scanning features both in elevation and azimuth. © 2002 Wiley Periodicals, Inc. Int J RF and Microwave CAE 12: 272–287, 2002.  相似文献   

20.
A circularly polarized beam‐steering antenna array with Butler matrix is designed in this letter for ultra‐high frequency radio frequency identification applications. To achieve the identification of the fast‐moving tag groups, a 3 × 4 Butler matrix is utilized to switch the radiation directions at ?25°, 0°, and +25°, respectively. Besides, series‐fed patch antenna element is designed and the 1 × 4 antenna array is built with element rotation for a good polarization performance. Finally, the proposed antenna system is fabricated and the identification area and radiation performance are tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号