首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated oxide TFT backplane technology to employ the internal gate driver IC (GIP circuit) on 55” 4K OLED TV panel. For the GIP circuit, we developed the high reliability oxide TFTs, especially only ?0.4 V Vth degradation under 100‐h long‐term PBTS stress and the short channel length TFTs (L = 4.5um) for narrow bezel. Consequently, we demonstrated the 55‐in 4K OLED TV employing the internal gate IC with high reliability and short channel IGZO TFTs.  相似文献   

2.
In this paper, we present a high image quality organic light‐emitting diode (OLED) display with motion blur reduction technology. Our latest work includes driving method that reduces motion blur using an adaptive black data insertion, brightness compensation technology, the simple structure pixel with low capacitance coupling for horizontal noise, and the multifunction integrated gate driver. The moving picture response time (MPRT) value of the OLED display panel with a fast response time was significantly affected by the frame frequency and the compensation driving method. The MPRT value of the large‐size OLED display panels was significantly decreased by using the integrated gate driver circuit with an MPRT reduction method. The decrease in the MPRT value originated from the turning of the emitting pixels off in advance resulting from providing black data. The integrated gate drivers were designed to achieve the normal display, the black data insertion, and the compensation mode. The MPRT value of the 65‐in. ultrahigh‐definition (UHD) OLED panels was decreased to 3.4 ms by using an integrated gate driver circuit. The motion blur of large‐size OLED display panels was significantly reduced due to a decrease in the MPRT value.  相似文献   

3.
In this paper, we present novel organic light‐emitting diode (OLED) display panel compensation technologies for large‐sized ultra‐high‐definition OLED TVs considering variations of threshold voltage, mobility, channel size, OLED efficiency, and OLED uniformity. Using these technologies, we have successfully launched 55‐, 65‐ and 77‐in. ultra‐high‐definition OLED TVs.  相似文献   

4.
Large flexible organic light‐emitting diode (OLED) display provides various electronic applications such as curved, bendable, rollable, and commercial display, because of its thinness, light weight, and design freedom. In this work, the process flow and key technologies to fabricate the world's first large size 77‐inch transparent flexible OLED display are introduced. “White OLED on TFT + color filter” method is used to fabricate the aforementioned display. On both thin‐film transistor and color filter substrates, transparent polyimide (PI) was used as plastic substrate with multi‐barrier. In case of a transparent flexible display, the multi‐barrier is required for the additional consideration to overcome the decrease of transmittance due to the difference in refractive index of the conventional multi‐barrier. We developed the special multi‐barrier to increase transparency with superior water vapor transition rate characteristic. The optimized amorphous indium gallium zinc oxide thin‐film transistors were employed on the multi‐barrier, and it shows the highly uniform electrical performance and reliability on plastic substrate. Also, the typical panel failure mechanism during laser lift‐off process caused by a particle in PI is studied, and a sacrificial layer was suggested between PI and a carrier glass to reduce the panel failure. Finally, we successfully realized the world's first 77‐inch transparent flexible OLED display with ultra‐high‐definition resolution, which can be rolled up to a radius of 80 mm with a transmittance of 40%.  相似文献   

5.
In this article, we described an innovative design technology of active matrix organic light emitting diode (AMOLED) display, to provide a bezel free design. We designed gate driver circuit of amorphous indium‐gallium‐zinc oxide thin‐film transistors (TFTs) not on the bezel area but within the active array. Although we applied challengeable design, no degradation of electrical/optical properties of panel was observed. Because we effectively prevented capacitive coupling and interference between the emission circuit and integrated gate driver circuit in active array, finally, we successfully demonstrated a bezel free designed AMOLED display of 18.3″ HD (1366 × 768) driven by a‐InGaZnO TFTs.  相似文献   

6.
A new gate driver has been designed and fabricated by amorphous silicon technology. With utilizing the concept of sharing the noise free block in a single stage for gate driver, dual‐outputs signals could be generated in sequence. By increasing the number of output circuit block in proposed gate driver, number of outputs per stage could also be adding that improves the efficiency for area reduction. Besides, using single driving thin‐film‐transistor (TFT) for charging and discharging, the area of circuit is also decreased by diminishing the size of pulling down TFT. Moreover, the proposed gate driver has been successfully demonstrated in a 5.5‐inch Full HD (1080xRGBx1920) TFT‐liquid‐crystal display panel and passed reliability tests of the supporting foundry.  相似文献   

7.
A hydrogenated amorphous silicon (a‐Si:H) thin‐film transistor (TFT) gate driver with multioutputs (eight outputs per stage) for high reliability, 10.7‐inch automotive display has been proposed. The driver circuit is composed of one SR controller, eight driving TFTs (one stage to eight outputs) with bridging TFTs. The SR controller, which starts up the driving TFTs, could also prevent the noise of gate line for nonworking period. The bridging TFT, using width decreasing which connects between the SR controller and the driving TFT, could produce the floating state which is beneficial to couple the gate voltage, improves the driving ability of output, and reaches consistent rising time in high temperature and low temperature environment. Moreover, 8‐phase clocks with 75% overlapping and dual‐side driving scheme are also used in the circuit design to ensure enough charging time and reduce the loading of each gate line. According to lifetime test results, the proposed gate driver of 720 stages pass the extreme temperature range test (90°C and ?40°C) for simulation, and operates stably over 800 hours at 90°C for measurement. Besides, this design is successfully demonstrated in a 10.7‐inch full HD (1080 × RGB×1920) TFT‐liquid‐crystal display (LCD) panel.  相似文献   

8.
Abstract— A novel gate‐driver circuit using amorphous‐silicon (a‐Si) TFTs has been developed. The circuit has a shared‐node dual pull‐down AC (SDAC) structure with a common‐node controller for two neighboring stages, resulting in a reduced number of TFTs. The overlapped clock signals widen the temperature range for stable operation due to the extended charging time of the inner nodes of the circuit. The accelerated lifetime was found to be over 1000 hours at 60°C with good bias‐temperature‐stress (BTS) characteristics. Accordingly, the a‐Si gate‐driver circuit was successfully integrated into a 14.1‐in. XGA (1024 × RGB × 768) TFT‐LCD panel having a single bank form.  相似文献   

9.
This study compared the effects of 4K organic light‐emitting diode (OLED) and liquid‐crystal display (LCD) TVs on human visual task performance and fatigue when viewing moving pictures. In experiments conducted, subjects were asked to locate 35 icons among a total of 276 on‐screen icons at four moving picture speeds. From the results obtained, it was determined that OLED TVs (emissive type) exhibit superior characteristics for hit rate and false alarm rate compared with LCD TVs (non‐emissive‐type). The evaluation results of a simulator sickness questionnaire administered to ascertain fatigue levels also indicated that OLED TVs induce relatively little fatigue at fast‐moving picture speeds of 10 ppf or more compared with LCD TVs. Thus, this study confirms that OLED TVs, given their ultrafast response time characteristics, are superior in terms of moving picture images to LCD TVs.  相似文献   

10.
In this paper, we propose an external feedback method to compensate the device variation for active‐matrix organic light‐emitting diode. The pixel data current is controlled by ramping the gate voltage and converted to the sensed voltage Vsense in real time. When Vsense is equal to a preset voltage Vdata, the switching block outputs the low potential to stop the ramping. Therefore, the gate voltage is locked at the value corresponding to the target data current. This circuit is implemented with three thin‐film transistors in the active area and some functional blocks in driver integrated circuit (IC), namely, sentinel block, current‐voltage converting block, and switching block. Unlike the other usual methods of external compensation requiring double number of connections between driver IC and glass, by using the common ramping signal and a simple circuit made on glass, the proposed method can be implemented with only one pin per column.  相似文献   

11.
Abstract— A liquid‐crystal panel integrated with a gate driver and a source driver by using amorphous In—Ga—Zn‐oxide TFTs was designed, prototyped, and evaluated. By using the process of bottom‐gate bottom‐contact (BGBC) TFTs, amorphous In—Ga—Zn‐oxide TFTs with superior characteristics were provided. Further, for the first time in the world, a 4‐in. QVGA liquid‐crystal panel integrated with a gate driver and a source driver was developed by using BGBC TFTs formed from an oxide semiconductor. By evaluating the liquid‐crystal panel, its functionality was successfully demonstrate. Based on the findings, it is believed that the novel BGBC amorphous In—Ga—Zn‐oxide TFT will be a promising candidate for future large‐screen backplanes having high definition.  相似文献   

12.
In this study, the device structure of a white tandem organic light‐emitting diode (OLED) was changed to control the emission area and thereby achieve less luminance decay. A long‐life 13.5‐inch 4 K flexible c‐axis‐aligned crystal oxide semiconductor (CAAC‐OS) active‐matrix OLED with less color shift and high resolution was fabricated using this long‐life white OLED, transfer technology, and a CAAC‐OS field‐effect transistor.  相似文献   

13.
Abstract— A 12.1‐in. tablet liquid‐crystal‐display (LCD) panel with integrated amorphous‐silicon row driver circuits has been developed using a standard TFT process and Advanced Fringe‐Field Switching (AFFS) technology. An XGA‐resolution 768‐stage shift‐register circuit with two‐phase clocks has been designed and fabricated. The circuit parameters were optimized in order to obtain a highly reliable a‐Si row‐driver‐circuit structure. Thermal Humidity Operation (THO) test results at 50°C and 80% humidity during 500 hours of operation shows that the fabricated panel is reliable during long‐term operation and any abnormal display phenomenon was not observed at 0°C.  相似文献   

14.
We propose an in‐pixel temperature sensor using low‐temperature polycrystalline silicon and oxide (LTPO) thin‐film transistor (TFTs) for high‐luminance active matrix (AM) micro‐light‐emitting diode (LED) displays. By taking advantage of the different off‐current characteristics of p‐type LTPS TFTs and n‐type a‐IGZO TFTs under temperature change, we designed and fabricated a temperature sensor consists of only LTPO TFTs without additional sensing component or material. The fabricated sensor exhibits excellent temperature sensitivity of up to 71.8 mV/°C. In addition, a 64 × 64 temperature sensor array with 3T sensing pixel and integrated gate driver has also been fabricated, which demonstrates potential approach for maxing out the performance of high‐luminance AM micro‐LED display with real‐time in‐pixel temperature monitoring.  相似文献   

15.
This paper proposes an integrated shift register circuit for an in‐cell touch panel that is robust over clock noises. It is composed of 10 thin film transistors and 1 capacitor, and the time division driving method is adopted to prevent the negative effect of display signals on the touch sensing. Two pre‐charging nodes are employed for reducing the uniformity degradation of gate pulses over time. In particular, the proposed circuit connects a drain of the first pre‐charging node's pull‐up thin film transistor (TFT) to the positive supply voltage instead of clock signals. This facilitates to lower coupling noises as well as to clock power consumption. The simulation program with an integrated circuit emphasis is conducted for the proposed circuit with low temperature poly‐silicon TFTs. The positive threshold voltage that shifts up to 12 V at the first pre‐charging pull‐up TFT can be compensated for without the uniformity degradation of gate pulses. For a 60‐Hz full‐HD display with a 120‐Hz reporting rate of touches, the clock power consumption of the proposed gate driver circuit is estimated as 7.13 mW with 160 stages of shift registers. In addition, the noise level at the first pre‐charging node is lowered to ?28.95 dB compared with 2.37 dB of the previous circuit.  相似文献   

16.
This paper presents a timing controller embedded driver (TED) IC with 3.24‐Gbps embedded display port (eDP), which is implemented using a 45‐nm high‐voltage CMOS process for the chip‐on‐glass (COG) TFT‐LCD applications. The proposed TED‐IC employs the input offset calibration scheme, the zero‐adjustable equalizer, and the phase locked loop‐based bang‐bang clock and data recovery to enhance the maximum data rate. Also, the proposed TED‐IC provides efficient power management by supporting advanced link power management feature of eDP standard v1.4. Additionally, the smart charge sharing is proposed to reduce the dynamic power consumption of output buffers. Measured result demonstrates the maximum data rate of 3.24 Gbps from a 1.1 V supply voltage with a 7.9‐inch QXGA 60‐Hz COG‐LCD prototype panel and 44% power saving from the display system.  相似文献   

17.
Ultra‐high definition (UHD) curved organic light‐emitting diode (OLED) TV requires advanced technologies to realize mass production. White, red, green, and blue (WRGB) OLED TV based on stripe WRGB sub‐pixel structure has distinct advantages in luminance of white, faster response time, wider viewing angle, and potential higher resolution. In this paper, we will introduce technological progress for commercializing large‐sized and UHD curved OLED TV. Those technologies including oxide thin film transistors, white OLEDs, compensation circuit, and solid phase encapsulation enable panel size scalability as well as mass production with lifetime reliability.  相似文献   

18.
An intra‐panel interface addressing all of the high‐speed, low‐power, and low‐electromagnetic interference (EMI) requirements for tablet personal computer applications is presented. This work proposes an adaptive clock window scheme to achieve 1.4‐Gbps data‐rate. For EMI suppression, data scrambling, horizontal blank period pattern scrambling, and novel clock and data recovery circuit are introduced. Lastly, for power‐saving, the proposed interface dynamically biases source driver's output buffers and employs early charge sharing by controlling the configuration data. For verification, a WQXGA thin‐film transistor liquid crystal display system is implemented with the timing controller and source driver ICs that are fabricated using 65‐nm and 180‐nm complementary metal‐oxide semiconductor (CMOS) processes, respectively. The liquid crystal display system demonstrates maximum operation speed of 1.4 Gbps and suppression of EMI noise in LTE Band‐20 and GSM 850 bands. The proposed power‐saving schemes achieve 4.3% reduction in total power consumption by source driver IC, which reaches about 85% of power consumption by enhanced reduced‐voltage differential signaling interface circuit.  相似文献   

19.
Abstract— A common‐decoder architecture for a data‐driver circuit fabricated by using a polysilicon process has been developed. The architecture achieves a compact circuit and low‐power consumption. In application to an integrated polysilicon data driver for small‐sized displays, this architecture reduces the area of the data driver by removing the vertical bus lines that occupy a large area. It also suppresses the power consumption of the data bus by reducing the number of driven lines in the data bus during word‐to‐word transitions from six to two. By using a conventional 4‐μm design rule, we fabricated an active‐matrix OLED (AMOLED) panel with an integrated six‐bit data‐driver circuit with 384 outputs. The driver circuit had a height of 2.6 mm and a pitch between output lines of 84 μm. The maximum power consumption of the driver was only 5 mW, i.e., 3.8 mW for logic‐data transfer and 1.2 mW for reference‐voltage source. Furthermore, we also fabricated an active‐matrix LCD (AMLCD) panel including driver circuits of the same type as the integrated elements. Six‐bit full‐color images were successfully displayed on both panels.  相似文献   

20.
Abstract— The image quality of an OTFT‐driven flexible AMOLED display has been improved by enhancing the performance of OTFTs and OLEDs. To reduce the operating voltage of OTFTs on a plastic film, Ta2O5 with a high dielectric constant was used as a gate insulator. The organic semiconductor layer of the OTFT was successfully patterned by a polymer separator, which is an isolating wall structure using an organic material. The OTFT performance, such as its current on/off ratio, carrier mobility, and spatial uniformity on the backplane, was enhanced. A highly efficient phosphorescent OLED was used as a light‐emission device. A very thin molybdenum oxide film was introduced as a carrier‐injection layer on a pixel electrode to reduce the operating voltage of the OLED. After an OTFT‐driven flexible AMOLED display was fabricated, the luminance and uniformity on the display was improved. The fabricated display also showed clear moving images, even when it was bent at a low operating voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号