首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Legumes provide an important part of the world's protein requirements, as well as other nutrients, but they are underutilized as food. A major factor limiting expanded consumption is storage induced textural defects that prolong cooking time and demand correspondingly higher energy requirements for preparation. Estimates of losses due to hardening are difficult to obtain but show the economic importance of the problem. These defects, including the hard-to-cook phenomenon and hard shell, are initiated by structural and compositional factors but can be at least partially controlled by storage and processing conditions. The available literature on bean hardening is reviewed from which it may be concluded that adverse storage conditions (high temperatures and humidities) consistently produce these defects. A kinetic approach is taken to the hardening problem, including hydration and cooking, which should allow a better understanding of the processes involved. Methods that can be utilized to produce better cooking legumes are reviewed as are processing alternatives including disruption and dry fractionation, wet fractionation, extrusion, enzymes and animal feeding. The influence of hardening on the nutritive value of legumes, although not extensively studied, is examined and it is concluded that protein quality and the availability of essential amino acids can suffer. A course of action for future research is recommended.  相似文献   

2.
In 2007 EU Regulation (EC) 834/2007 introduced principles and criteria for organic food processing. These regulations have been analysed and discussed in several scientific publications and research project reports. Recently, organic food quality was described by principles, aspects and criteria. These principles from organic agriculture were verified and adapted for organic food processing. Different levels for evaluation were suggested. In another document, underlying paradigms and consumer perception of organic food were reviewed against functional food, resulting in identifying integral product identity as the underlying paradigm and a holistic quality view connected to naturalness as consumers' perception of organic food quality. In a European study, the quality concept was applied to the organic food chain, resulting in a problem, namely that clear principles and related criteria were missing to evaluate processing methods. Therefore the goal of this paper is to describe and discuss the topic of organic food processing to make it operational. A conceptual background for organic food processing is given by verifying the underlying paradigms and principles of organic farming and organic food as well as on organic processing. The proposed definition connects organic processing to related systems such as minimal, sustainable and careful, gentle processing, and describes clear principles and related criteria. Based on food examples, such as milk with different heat treatments, the concept and definitions were verified. Organic processing can be defined by clear paradigms and principles and evaluated according criteria from a multidimensional approach. Further work has to be done on developing indicators and parameters for assessment of organic food quality. © 2013 Society of Chemical Industry  相似文献   

3.
The health and wellbeing of future generations will depend on humankind's ability to deliver sufficient nutritious food to a world population in excess of 9 billion. Feeding this many people by 2050 will require science‐based solutions that address sustainable agricultural productivity and enable healthful dietary patterns in a more globally equitable way. This topic was the focus of a multi‐disciplinary international conference hosted by Nestlé in June 2015, and provides the inspiration for the present article. The conference brought together a diverse range of expertise and organisations from the developing and industrialised world, all with a common interest in safeguarding the future of food. This article provides a snapshot of three of the recurring topics that were discussed during this conference: soil health, plant science and the future of farming practice. Crop plants and their cultivation are the fundamental building blocks for a food secure world. Whether these are grown for food or feed for livestock, they are the foundation of food and nutrient security. Many of the challenges for the future of food will be faced where the crops are grown: on the farm. Farmers need to plant the right crops and create the right conditions to maximise productivity (yield) and quality (e.g. nutritional content), whilst maintaining the environment, and earning a living. New advances in science and technology can provide the tools and know‐how that will, together with a more entrepreneurial approach, help farmers to meet the inexorable demand for the sustainable production of nutritious foods for future generations. © 2015 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

4.
The occurrence of Listeria monocytogenes in ready‐to‐eat (RTE) fish products is well documented and represents an important food safety concern. Contamination of this pathogen in vacuum‐packed (VP) smoked fish products at levels greater than the RTE food limit (100 CFU/g) has been traced to factors such as poor sanitary practices, contaminated processing environments, and temperature abuse during prolonged storage in retail outlets. Intervention technologies including physical, biological, and chemical techniques have been studied to control transmission of L. monocytogenes to these products. High‐pressure processing, irradiation, and pulsed UV‐light treatment have shown promising results. Potential antilisterial effects of some sanitizers and combined chemical preservatives have also been demonstrated. Moreover, the concept of biopreservation, use of bioactive packaging, and a combination of different intervention technologies, as in the hurdle concept, are also under consideration. In this review, the prevalence, routes of contamination, and potential intervention technologies to control transmission of L. monocytogenes in VP smoked fish products are discussed.  相似文献   

5.
Functional foods and their health benefits beyond individual nutrients present challenges to the traditional ‘nutrition’ approach to foods. Epidemiological studies suggest that regular or increased consumption of fruits may promote general health and well‐being as well as reduce the risk of chronic diseases. Therefore, a broad range of research amongst academic, industry and government institutes has been stimulated in attempts to add the goodness of fruits into popular consumer foods. This article provides a brief overview of the research opportunities in the emerging functional foods area, with an emphasis on fruit‐derived products. Based on recent research in the fruit‐based functional food area, a structured approach for designing and developing functional finished products is presented. Included are the technical challenges and their associated solutions during food design, formulation, processing and storage. A consumer‐oriented food product development process is highlighted. Controlling the interactions among the targeted bioactives and other food components during food processing, handling and storage is the key to ensure that a stable and appealing functional food is produced. Manipulating the beneficial synergies among food ingredients, and among food formulation and processing methods, has the potential to lead to substantial food innovations.  相似文献   

6.
This review presents innovative food processing techniques and their role in promoting sustainable food industry. These techniques (such as microwave, ultrasound, pulse electric field, instant controlled pressure drop, supercritical fluid processing) in the frontiers of food processing, food chemistry, and food microbiology, are not new and were already used for > 30 years by academia and industry. We will pay special attention to the strategies and the tools available to make preservation, transformation and extraction greener and present them as success stories for research, education and at industrial scale. The design of green and sustainable processes is currently a hot research topic in food industry. Herein we aimed to describe a multifaceted strategy (innovative technologies, process intensification, bio-refinery concept) to apply this concept at research, educational, and industrial level.Industrial relevanceGreen Food Processing could be a new concept to meet the challenges of the 21st century, to protect both the environment and consumers, and in the meantime enhance competition of industries to be more ecologic, economic and innovative. This green approach should be the result of a whole chain of values in both senses of the term: economic and responsible, starting from the production and harvesting of food raw materials, processes of preservation, transformation, and extraction together with formulation and marketing.  相似文献   

7.
Polymeric packaging protects food during storage and transportation, and withstands mechanical and thermal stresses from high‐temperature conventional retort or microwave‐assisted food processing treatments. Chemical compounds that are incorporated within polymeric packaging materials to improve functionality, may interact with food components during processing or storage and migrate into the food. Once these compounds reach a specified limit, food quality and safety may be jeopardized. Possible chemical migrants include plasticizers, antioxidants, thermal stabilizers, slip compounds, and monomers. Chemical migration from food packaging is affected by a number of parameters including the nature and complexity of food, the contact time and temperature of the system, the type of packaging contact layer, and the properties of the migrants. Researchers study the migration of food‐packaging compounds by exposing food or food‐simulating liquids to conventional and microwave heating and storage conditions, primarily through chromatographic or spectroscopic methods; from these data, they develop kinetic and risk assessment models. This review provides a comprehensive overview of the migration of chemical compounds into food or food simulants exposed to various heat treatments and storage conditions, as well as a discussion of regulatory issues.  相似文献   

8.
Abstract

Investigations on the biological effects of high voltage electric pulses primarily concern membrane permeabilization and microbial inacti‐vation. Electroporation resulting from increased transmembrane potential is probably the main cause for membrane permeabilization. Equations are presented for this phenomenon. Results from several studies on the inactivation of microorganisms by pulsed electric fields are summarized in tables that relate the rate of inactivation to process conditions. The influence of three sets of parameters is discussed: 1) type and physiological state of the microorganism; 2) chemical composition and electrical resistivity of the microorganism‐containing food or medium; 3) process conditions such as field intensity, duration and number of pulses, dissipated energy, final temperature, type of pulse and of treatment chamber. Data can be used to select conditions which produce a 5–6 log cycle inactivation for many yeasts or vegetative bacteria. Bacterial spores generally resist inactivation. Pulsed electric fields of relatively low intensity may be used to permeabilize larger cells from plant or animal tissues in order to facilitate theextraction of specific constituents or to increase the drying rate. Little is known concerning the possible chemical or physico‐chemical modifications of food constituents by high voltage electric pulses. Some enzymes appear to be inactivated, even at low temperatures, while others are more resistant. The sensorial characteristics of a number of foods subjected to electric fields do not appear to be significantly altered. Potential food applications are numerous and mainly related to liquid foods (fruit juices, milk, sauces, liquid egg) or to pumpable food pastes (fruit or vegetable purées, minced meat, etc.). Both neutral and acidic foods are likely candidates. The main objectives of microbial inactivation by electric pulses are food sanitation and/or extension of chilled storage. The process should be nonthermal (maximum ?T of ~30°C) to preserve food freshness and quality. A low operating cost, estimated at 0.4–0.8 US cents per liter of food (capital investment not included) and continuous operation at high flow rate (>1000 L/h) represent significant industrial advantages for this new technology.  相似文献   

9.
Tropical fruits represent one of the most important crops in the world. The continuously growing global market for the main tropical fruits is currently estimated at 84 million tons, of which approximately half is lost or wasted throughout the whole processing chain. Developing novel processes for the conversion of these byproducts into value‐added products could provide a viable way to manage this waste problem, aiming at the same time to create a sustainable economic growth within a bio‐economy perspective. Given the ever‐increasing concern about sustainability, complete valorization through a bio‐refinery approach, that is, zero waste concept, as well as the use of green techniques is therefore of utmost importance. This paper aims to report the status on the valorization of tropical fruit byproducts within a bio‐refinery frame, via the application of traditional methodologies, and with specific attention to the extraction of phenolics and carotenoids as bioactive compounds. The different types of byproducts, and their content of bioactives is reviewed, with a special emphasis on the lesser‐known tropical fruits. Moreover, the bioactivity of the different types of extracts and their possible application as a resource for different sectors (food, pharmaceutical, and environmental sciences) is discussed. Consequently, this review presents the concepts of tropical fruit biorefineries, and the potential applications of the isolated fractions.  相似文献   

10.
水果病虫害无损检测技术研究进展   总被引:1,自引:0,他引:1  
水果的病害和虫害是影响水果品质等级鉴定的重要因素。水果在生长、加工、贮藏、运输过程中容易受到病菌侵染和害虫侵蚀,这将造成水果品质降低,同时对食品安全也会造成不良影响。本文综述了X射线成像技术、计算机视觉技术、核磁共振技术、光谱技术、新兴传感器技术等无损检测技术在水果病虫害识别与检测中的应用进展,并分析各技术的优势和劣势,重点介绍了高光谱成像技术在水果病虫害识别与检测方面的应用进展,分析存在的问题、展望发展趋势,为后续研究提供参考。  相似文献   

11.
A growing world population and ongoing climate change have created a need to find new sources of high-quality food, especially protein, that are sustainable and environmentally friendly and help to reduce unsustainable livestock production. Therefore, it is necessary to look for sources of protein from new raw materials or to use existing materials that have not been used on a large scale. The highest protein intake characterises athletes; thus, the market for high-protein products should be targeted for them. This paper outlines the main problems associated with protein production to date, mainly from animal sources and some known plant sources such as pulses, which can cause gastrointestinal problems in athletes. This review aimed to propose several new/alternative protein sources (Single Cell Protein, edible insects, algae, and potato protein) that may have the potential for use in food, including food for athletes while solving the described problems associated with existing protein sources. Insects have the best amino acid composition; microbial and algal proteins have great potential but require further development of technology for application to food products. Potato proteins are of high value and quality but also contain glycoalkaloids. However, using them brings additional economic and environmental benefits.  相似文献   

12.
BackgroundFood security is both a complex and challenging issue to resolve as it cannot be characterized or limited by geography nor defined by a single grouping, i.e., demography, education, geographic location or income. Currently, approximately one billion people (16% of global population) suffer from chronic hunger in a time when there is more than enough food to feed everyone on the planet. Therein lies the Food security challenge to implement an ability to deal with increasing food shortages, caused by a combination of waste and an ever expanding world population. At current levels prediction state that we must increase global food production by 70% on already over exploited finite infrastructures before 2050.Scope and approachThis review paper firstly introduces the concept of Food Security with an overview of its scale and depth in the context of the global food industry. It then highlights the main sources. The readership is then introduced to the key factors affecting food security and highlights the many national and international measures adopted to tackle the problem at both policy and technological level.Key findings and conclusionsFood experts indicate that no one single solution will provide a sustainable food security solution into the future. Collective stakeholder engagement will prove essential in bringing about the policy changes and investment reforms required to achieve a solution. Achieving truly sustainable global food security will require a holistic systems-based approach, built on a combination of policy and technological reform, which will utilize existing systems combined with state-of-the-art technologies, techniques and best practices some of which are outlined herein.  相似文献   

13.
Some forms of malnutrition are partly due to agriculture not having nutrient outputs as an explicit goal. A better understanding of what is required from agricultural production and food processing for healthy and sustainable diets is needed. Besides nutritional quality or nutrient output, important factors are: water, soil, health hazards, agrobiodiversity and seasonality. Therefore, possible interactions among constituents of the food chain – human health, the environment, knowledge and education – should be considered from a systemic perspective. Nutrition-sensitive agriculture needs to consider and understand the role of biodiversity in improving dietary quality and dietary diversity as well as seasonality in food supply. Apart from improving agricultural systems in order to close the nutrition gap, efficient storage and food processing technologies to prolong shelf-life are required. If processing is poor, high food losses can cause food insecurity or increase the risk of producing unsafe and unhealthy food. Food storage and processing technologies, particularly at household level, are challenging and often not applicable to traditional crops. In order to achieve the aims of nutrition-sensitive agriculture, it is necessary to comprehend its complexity and the factors that influence it. This will require a trans-disciplinary approach, which will include the three sectors agriculture, nutrition and health at research, extension and political levels. Ensuring that farmers are knowledgeable about production systems, which sustainably provide adequate amounts of nutritious food while conserving the environment is an essential part of nutrition-sensitive agriculture. At the same time, for the benefits of nutrition-sensitive agriculture to be realized, educated consumers are required who understand what constitutes a healthy and sustainable diet.  相似文献   

14.
番茄红素是一种很不稳定的脂溶性色素,在加工和储存过程中容易氧化或异构化。近年来人们已经应用微胶囊化来改善番茄红素的不稳定性。微胶囊化的番茄红素能减少与外界的接触,免受外界因素的不利影响,增加番茄红素的储存稳定性,提高其在肠道中的生物利用率。本文对番茄红素微胶囊的制备、储存稳定性及生物利用率进行了综述,以期为番茄红素微胶囊技术的应用提供参考。  相似文献   

15.
BackgroundThe need for renewable and sustainable sources of proteins is growing. Diets containing more plant protein are increasing due to several reasons: the negative environmental impacts of animal protein production, the increasing vegetarianism and veganism trends, and inadequate consumer acceptance of food grade insects.Scope and approachThis paper links the isolation of valuable proteins from sustainable sources – by-products from processing industry of plant origin and eco-innovative technologies which are emerging for this purpose (electrostatic separation, subcritical water extraction, reverse micelles extraction, aqueous two-phase systems extraction, enzyme-, microwave-, ultrasound-, pulsed electric energy- and high pressure-assisted extraction). In this way, not only the key challenges of modern food processing are met-the assurance of cost-effective, sustainable and environmentally friendly production, but also the concept of zero food waste seems more achievable.Key findings and conclusionsA number of different techniques have emerged with high potential to assist protein extraction of preserved techno-functional properties, but they are still in the early stage of its industrial applications. In the EU, its industrial application may be hindered by legislative issues. The respective Novel Food Regulation classifies food obtained in a production process not used for food production before 15 May 1997, as “novel food’’ and the regulatory status for each single case must be sought. On the other hand, the utilization of novel processing technologies is regulatory encouraged in EU due to their potential to reduce the environmental impact of food production, enhance food security and bring benefits to consumers.  相似文献   

16.
Campylobacteriosis is one of the most common bacterial infections worldwide causing economic costs. The high prevalence of Campylobacter spp. in poultry meat is a result of several contamination and cross‐contamination sources through the production chain. Moreover, survival mechanisms, such as biofilm formation, viable but nonculturable state, and antimicrobial resistance, enable its persistence during food processing. Therefore, mitigation strategies are necessary in order to avoid and/or inactivate Campylobacter at farm, abattoir, industry, and retail level. In this review, a number of potential strategies and novel technologies that could reduce the prevalence of Campylobacter in poultry meat have been identified and evaluated to provide a useful overview. At farm level for instance, biosecurity, bacteriocins, probiotics, feed and water additives, bacteriophages, and vaccination could potentially reduce colonization in chicken flocks. However, current technologies used in the chicken slaughter and processing industry may be less effective against this foodborne pathogen. Novel technologies and strategies such as cold plasma, ultraviolet light, high‐intensity light pulses, pulsed electric fields, antimicrobials, and modified atmosphere packaging are discussed in this review for reducing Campylobacter contamination. Although these measures have achieved promising results, most have not been integrated within processing operations due to a lack of knowledge or an unwillingness to implement these into existing processing systems. Furthermore, a combination of existing and novel strategies might be required to decrease the prevalence of this pathogen in poultry meat and enhance food safety. Therefore, further research will be essential to assess the effectiveness of all these strategies.  相似文献   

17.
BackgroundFruits are the rich source of bioactive compounds (vitamins, phenolics, carotenoids, and flavonoids) attributing to the antioxidant potential. To make these fruits available for consumption during off-season, the fruits are processed into shelf-stable products like jam and jellies. However, the bioactive compounds mostly decrease during processing and storage of these products. The loss may vary with the process severity (temperature and time of processing) and product composition (sugars, pectin, fruit, etc.).Scope and approachThe overall changes in bioactive compounds during processing and storage of jam and jellies have been summarized in this review. The factors affecting these differences and the mechanisms responsible for such reactions have been discussed in detail. It might be helpful to a food scientist or a food industry in improving the product with respect to its quality and for health implications altogether.Key findings and conclusionsThe presence of high sugar content and pectin with a low degree of esterification can preserve the bioactive compounds during thermal processing by reducing the adverse reactions in jam and by interacting with functional components through hydrogen or hydrophobic bonding. The change in bioactive compounds may continue during storage depending on storage conditions, where the storage temperature and duration have a significant effect. Lower the temperature of storage, better is the retention of biologically active compounds in jam and jelly. Encapsulation and use of non-thermal processing can be explored to preserve the bioactive compounds in food products against various adverse conditions.  相似文献   

18.
Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel‐producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop‐in fuels for existing engines. Their properties should therefore be more similar to those of oil‐derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost‐effective production of such designed biofuels, using S. cerevisiae‐based cell factories, are presented in this review. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The phenomenon of glass transition has been employed to food products to study their stability. It can be applied as an integrated approach along with water activity and physical and chemical changes in food in processing and storage to determine the food stability. Also associated with the changes during agglomeration crystallization, caking, sticking, collapse, oxidation reactions, nonenzymatic browning, and microbial stability of food system. Various techniques such as Differential Scanning Calorimetry, Nuclear Magnetic Resonance, etc. have been developed to determine the glass transition temperature (Tg) of food system. Also, various theories have been applied to explain the concept of Tg and its relation to changes in food system. This review summarizes the understanding of concept of glass transition, its measurement, and application in food technology.  相似文献   

20.
BACKGROUND: Food‐processing residues are good feedstocks for biofuel and biochemical production because they have high energy content and are abundant. Year‐round biofuel and biochemical production requires proper storage to prevent microbial decomposition and thermal runaway. In this study, microbial activity of tomato pomace (TP), grape pomace (GP), fermented grape pomace (FGP) and sugar beet pulp (SBP) was monitored at nine different moisture contents. RESULTS: Maximum and cumulative respirations for each feedstock with respect to moisture content followed a sigmoidal relationship. The critical moisture content below which no microbial activity was detected for SBP, TP, FGP and GP was 24–31, 16–21, 23–33 and 43–46% (dry basis) respectively. A logarithmic relationship was observed (R2 = 0.94) between critical moisture content and initial water‐soluble carbohydrate (WSC) content of the processing residues. CONCLUSION: The critical moisture content below which no microbial activity was detected and the relationship between critical moisture content and initial WSC content were determined in this study for four food‐processing residues. Both parameters permit evaluation of the potential for deterioration of food‐processing residues during storage based on moisture content and WSC content. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号