首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method.  相似文献   

2.
This paper considers the consensus tracking control problem for general linear multi‐agent systems with unknown dynamics in both the leader and all followers. Based on parameterizations of the unknown dynamics of all agents, two decentralized adaptive consensus tracking protocols, respectively, with dynamic and static coupling gains, are proposed to guarantee that the states of all followers converge to the state of the leader. Furthermore, this result is extended to the robust adaptive consensus tracking problem in which there exist parameter uncertainties and Lipschitz‐type disturbances in the network. It is also shown that the parameter estimation errors converge to zero based on contradiction method and Lyapunov function approach. Finally, a simulation example is provided to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a bipartite consensus problem is considered for a high‐order multiagent system with cooperative‐competitive interactions and unknown time‐varying disturbances. A signed graph is used to describe the interaction network associated with the multiagent system. The unknown disturbances are expressed by linearly parameterized models, and distributed adaptive laws are designed to estimate the unknown parameters in the models. For the case that there is no exogenous reference system, a fully distributed adaptive control law is proposed to ensure that all the agents reach a bipartite consensus. For the other case that there exists an exogenous reference system, another fully distributed adaptive control law is also developed to ensure that all the agents achieve bipartite consensus on the state of the exogenous system. The stability of the closed‐loop multiagent systems with the 2 proposed adaptive control laws are analyzed under an assumption that the interaction network is structurally balanced. Moreover, the convergence of the parameter estimation errors is guaranteed with a persistent excitation condition. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed adaptive bipartite consensus control laws for the concerned multiagent system.  相似文献   

4.
有向图中网络Euler-Lagrange系统的自适应协调跟踪   总被引:4,自引:1,他引:3  
基于一致性理论, 在有向图中研究网络 Euler-Lagrange 系统的协调跟踪控制. 所有跟随智能体的动力学模型均为 Euler-Lagrange 方程. 在仅有部分跟随智能体能获取领航智能体信息的情形下, 同时考虑系统模型的参数不确定性, 设计分布式自适应控制律实现所有跟随智能体对领航智能体的跟踪. 针对领航智能体的运动状态, 考虑以下两种情形: 1) 领航智能体为固定点; 2) 领航智能体为动态点. 对第一种情形, 设计的控制律使得所有跟随智能体渐近交会于固定点; 对第二种情形, 首先对每个跟随智能体设计分布式连续估计器, 然后提出了分布式自适应控制律. 当每个跟随智能体均能获取领航智能体的加速度信息时, 设计的控制律能实现对领航智能体的渐近跟踪, 当跟随智能体不能获取领航智能体的加速度信息时, 跟踪误差是有界的. 最后通过仿真分析验证设计的控制算法是合理有效的.  相似文献   

5.
This paper studies the global leader‐following consensus problem for a multiagent system using event‐triggered linear feedback control laws. The leader agent is described by a neutrally stable linear system and the follower agents are also described by a neutrally stable linear system but with saturating input. Both the state‐feedback case and the output‐feedback case are considered. In each case, an event‐triggered control law is constructed for each follower agent and an event‐triggering strategy is designed for updating these control laws. These event‐triggered control laws are shown to achieve global leader‐following consensus when the communication topology among the follower agents is strongly connected and detailed balanced and the leader is a neighbor of at least one follower agent. The Zeno behavior is excluded. The theoretical results are illustrated by simulation.  相似文献   

6.
This paper addresses the consensus tracking problem for a class of heterogeneous nonlinear second‐order multi‐agent systems with parametric uncertainties, unmodeled dynamics, and bounded external disturbances. By linearly parameterizing the control input of the leader, two distributed adaptive robust consensus tracking control protocols with dynamic and fixed coupling gains are constructed based on the relative information from neighboring agents. The global tracking errors are shown to be guaranteed to exponentially converge to a ball with a constant radius at a prescribed rate of convergence under external disturbances. Finally, a numerical example is provided to verify the theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, an efficient framework is proposed to the consensus and formation control of distributed multi‐agent systems with second‐order dynamics and unknown time‐varying parameters, by means of an adaptive iterative learning control approach. Under the assumption that the acceleration of the leader is unknown to any follower agents, a new adaptive auxiliary control and the distributed adaptive iterative learning protocols are designed. Then, all follower agents track the leader uniformly on [0,T] for consensus problem and keep the desired distance from the leader and achieve velocity consensus uniformly on [0,T] for the formation problem, respectively. The distributed multi‐agent coordinations performance is analyzed based on the Lyapunov stability theory. Finally, simulation examples are given to illustrate the effectiveness of the proposed protocols in this paper.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the finite-time consensus problem of distributed agents having non-identical unknown nonlinear dynamics, to a leader agent that also has unknown nonlinear control input signal. By parameterization of unknown nonlinear dynamics, a Lyapunov technique in conjunction with homogeneity technique is presented for designing a decentralized adaptive finite-time consensus control protocol in undirected networks. Homogeneous Lyapunov functions and homogeneous vector fields are introduced in the stability analysis although the whole system is not homogeneous. Theoretical analysis shows that leader-following consensus can be achieved in finite-time, meanwhile, finite-time parameter convergence can be also guaranteed under the proposed control scheme. An example is given to validate the theoretical results.  相似文献   

9.
In this paper, the consensus tracking problem is investigated for stochastic nonlinear multiagent systems with full state constraints and time delays. The barrier Lyapunov functions proposed for single‐agent constrained systems are constructively extended to solve the consensus problem for multiagent systems with the full state constraints. Some Lyapunov‐Krasovskii functionals are introduced to compensate for state time delays, which are inherent in the complicated nonlinear systems. Based on the variable separation technique, the difficulty arising from the nonstrict‐feedback structure is overcome. Under a directed communication topology, the distributed neuroadaptive control protocols are proposed to guarantee that all the follower agents follow the trajectory of the leader agent and the full state constraints are not violated. The effectiveness of the proposed distributed adaptive control approach is verified via simulation examples.  相似文献   

10.
This paper addresses the cooperative output regulation problem of multiagent systems with fixed and switching topologies. Each agent is a heterogeneous linear system, and the output of the exosystem can be available to only a subset of agents. For the agents that can directly access the exosystem, a common observer based on an event‐triggered strategy is constructed to estimate the exogenous signal for feedback control design. For the rest of the agents, estimators based on an event‐triggered mechanism to acquire the estimation value of the exogenous signal are designed under some essential assumptions. A decentralized event‐triggered formulation is considered first by applying a Lyapunov function for a fixed topology. Furthermore, a topology‐dependent triggering condition and the average dwell‐time switching law are deduced simultaneously by using multiple Lyapunov functions for switching topologies. Under communication constraints, we propose observer‐based and estimator‐based feedback controllers to solve the cooperative output regulation problem using available local information among agents. Two examples are finally provided to verify the effectiveness of the proposed theoretical results.  相似文献   

11.
We consider the control problem for a group containing a given number of uninformed agents; this is a consensus problem. An agent’s model is defined by a two-dimensional integrator. The purpose of this work is to synthesize a decentralized smooth law of the agents’ motion in a multiagent system that would let us construct and support a prescribed configuration of the group of agents. The considered group should follow the leader, either real or virtual. Informational links between agents are given by a communications digraph. The work shows numerical results for various initial conditions and various desired trajectories.  相似文献   

12.
This paper studies the problem of adaptive control for a class of nonlinear time-varying discrete-time systems with nonparametric uncertainties. The plant parameters considered here are not necessarily slowly time-varying in a uniform way. They are allowed to have a finite number of big jumps. By using the backstepping procedures with parameter projection update laws, a robust adaptive controller can be designed to achieve adaptive tracking of a reference signal for this class of systems. It is shown that the proposed controller can guarantee the global boundedness of the states of the whole adaptive system in the presence of parametric and nonparametric uncertainties. It can also ensure that the tracking error falls within a compact set whose size is proportional to the size of the uncertainties and disturbances. In the ideal case when there is no nonparametric uncertainties and time-varying parameters, perfect tracking can be achieved  相似文献   

13.
基于带有非线性动态的二阶多智能体系统,研究了在有动态领导者条件下的跟踪一致性问题。假设跟随者只能获取邻居智能体的相对状态信息,只有一部分跟随者可以获得领导者的位置和速度信息,领导者的控制输入非零且不被任何一个跟随者可知。在通信拓扑为无向连通图的条件下,为了避免全局信息的不确定性,设计了分布式自适应控制协议。将系统的一致性问题转化为误差系统的一致性问题,通过Lyapunov稳定性理论和矩阵理论分析得到了该协议使系统达到一致的充分条件。最后用仿真例子证明了设计方法的有效性。  相似文献   

14.
This paper investigates the synchronization problem of generic linear multiagent systems via integral‐type event‐triggered control. Each agent can only utilize the intermittent information of its neighboring agents in the control scheme. Based on the integral‐type event conditions, an event‐triggered control protocol is designed to guarantee the synchronization of multiagent systems, and Zeno behavior is excluded by showing the existence of a positive lower bound on the inter‐event intervals. Then, we propose the integral‐type event‐triggered control algorithms to study the leader‐following synchronization. It is shown that under the control algorithms all the followers track the leader and no Zeno behavior occurs. The effectiveness of the proposed control schemes is demonstrated by simulation examples.  相似文献   

15.
讨论了参数不确定性关联模糊大系统的分散鲁棒镇定问题,所考虑的参数不确定性满足范数有界条件.基于李雅普诺夫稳定性理论及大系统分散控制理论,采用分散化PDC(parallel distributed compensation)控制器,给出了保证该关联模糊大系统闭环渐近稳定的LMI形式的充分条件,通过MATLAB软件中的LMI工具箱可求解出这些LMI中的控制器参数.仿真例子说明了所提方法的有效性.  相似文献   

16.
This paper presents consensus algorithms by integrating cooperative control and adaptive control laws for multi-agent systems with unknown nonlinear uncertainties. An ideal multi-agent system without uncertainties is introduced first. The cooperative control law, based on an artificial potential function, is designed to make the ideal multi-agent system achieve consensus under a fixed and connected undirected graph. The presence of uncertainties will degenerate the performance, or even destabilize the whole multi-agent system. The L 1 adaptive control law is therefore introduced to handle unknown nonlinear uncertainties. Two different consensus cases are considered: 1) normal consensus—where all agents reach an agreement on an initially undetermined position and velocity, and 2) consensus with a virtual leader—where all agents’ states converge to the virtual leader’s states. Under a fixed and connected undirected graph, the presented consensus algorithms enable the real multi-agent system to stay close to the ideal multi-agent system which achieves consensus with or without a virtual leader. Simulation results of 2-D consensus with nonlinear uncertainties are provided to demonstrate the presented algorithms.  相似文献   

17.
This article investigates the leader‐follower consensus problem of a class of non‐strict‐feedback nonlinear multiagent systems with asymmetric time‐varying state constraints (ATVSC) and input saturation, and an adaptive neural control scheme is developed. By introducing the distributed sliding‐mode estimator, each follower can obtain the estimation of leader's trajectory and track it directly. Then, with the help of time‐varying asymmetric barrier Lyapunov function and radial basis function neural networks, the controller is designed based on backstepping technique. Furthermore, the mean‐value theorem and Nussbaum function are utilized to address the problems of input saturation and unknown control direction. Moreover, the number of adaptive laws is equal to that of the followers, which reduces the computational complexity. It is proved that the leader‐follower consensus tracking control is achieved without violating the ATVSC, and all closed‐loop signals are semiglobally uniformly ultimately bounded. Finally, the simulation results are provided to verify the effectiveness of the control scheme.  相似文献   

18.
针对一类三角结构的非线性系统,基于状态参考自适应控制算法和滑模控制技术,研究了其在非匹配未知参数和不确定性干扰下的跟踪控制问题,提出了自适应滑模控制策略,实现了不确定非线性系统的鲁棒输出跟踪.与一般自适应控制相比,允许系统存在非参数化的不确定性和未知扰动,增强了控制系统鲁棒性.仿真算例证明了理论研究成果的正确性和可行性.  相似文献   

19.
This paper is concerned with the adaptive leader‐following consensus for first‐ and second‐order uncertain nonlinear multi‐agent systems (NMASs) with single‐ and double‐integrator leader, respectively. Remarkably, the control coefficients of the followers need not belong to any known finite interval, which makes the systems in question essentially different from those in the related works. Moreover, parameterized unknowns exist in the nonlinearities of the followers, and unknown control input is imposed on the leader, which make the problems difficult to solve. To compensate for these uncertainties/unknowns, the leader‐following consensus protocols are constructed by employing adaptive technique for the first‐order and the second‐order NMASs. Under the designed adaptive consensus protocols and the connected graph, the leader‐following consensus is achieved. Finally, two examples are given to show the effectiveness of the proposed leader‐following consensus protocols.  相似文献   

20.
This paper studies the problem of semi‐global leader‐following output consensus of a multi‐agent system. The output of each follower agent in the system, described by a same general linear system subject to external disturbances and actuator saturation, is to track the output of the leader, described by a linear system, which also generates disturbances as the exosystem does in the classical output regulation problem. Conditions on the agent dynamics are identified, under which a low‐gain feedback‐based linear state‐control algorithm is constructed for each follower agent such that the output consensus is achieved when the communication topology among the agents is a digraph containing no loop, and the leader is reachable from any follower agent. We also extend the results to the non‐identical disturbance case. In this case, conditions based on both the agent dynamics and the communication topology are identified, under which a low‐gain feedback‐based linear state‐control algorithm is constructed for each follower agent such that the leader‐following output consensus is achieved when the communication topology among the follower agents is a strongly connected and detailed balanced digraph, and the leader is a neighbor of at least one follower. In addition, under some further conditions on the agent dynamics, the control algorithm is adapted so as to achieve semi‐global leader‐following output consensus for a jointly connected undirected graph and the leader reachable from at least one follower. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号