首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes 2 schemes for a fault‐tolerant control using a novel optimal sliding‐mode control, which can also be employed as actuator redundancy management for overactuated uncertain linear systems. By using the effectiveness level of the actuators in the performance indexes, 2 schemes for redistributing the control effort among the remaining (redundant or nonfaulty) set of actuators are constructed based on an ‐based optimal sliding‐mode control. In contrast to the current sliding‐mode fault‐tolerant control design methods, in these new schemes, the level of control effort required to maintain sliding is penalised. The proposed optimal sliding‐mode fault‐tolerant control design schemes are implemented in 2 stages. In the first stage, a state feedback gain is derived using an LMI‐based scheme that can assign a number of the closed‐loop eigenvalues to a known value whilst satisfying performance specifications. The sliding function matrix related to the particular state feedback derived in the first stage is obtained in the second stage. The difference between the 2 schemes proposed for the sliding‐mode fault‐tolerant control is that the second one includes a separate control allocation module, which makes it easier to apply actuator constraints to the problem. Moreover, it will be shown that, with the second scheme, we can deal with actuator faults or even failures without controller reconfiguration. We further discuss the advantages and disadvantages of the 2 schemes in more details. The effectiveness of the proposed schemes are illustrated with numerical examples.  相似文献   

2.
This paper presents techniques to linearly combine the sensor measurements and/or actuator inputs of a linear time‐invariant system to obtain a new system that is interior conic with prescribed bounds. In the optimal sensor combination problem, a desired system output is defined, and in the optimal actuator combination problem, a desired system input is defined, along with a frequency bandwidth in which the desired system input or output should be matched. The simultaneous optimal sensor and actuator combination problem includes desired system outputs and inputs. In all cases, the weighted or norm of the difference between the system with linearly combined sensors or actuators and the desired system is minimized while rendering the new system interior conic with prescribed bounds. The weighting transfer matrix used in the ‐ or ‐optimization problem is determined by the frequency bandwidth of interest. The individual sensor and actuator combination methods involve linear matrix inequality constraints and are posed as convex optimization problems, whereas the combined sensor and actuator method is an iterative procedure composed of convex optimization steps. Numerical examples illustrate superior tracking performance with the proposed sensor and actuator combination techniques over comparable techniques in the literature when implemented with a simple feedback controller. Robust asymptotic stability of the closed‐loop system to plant uncertainty is demonstrated in the numerical examples.  相似文献   

3.
An adaptive sliding mode observer (SMO)–based fault‐tolerant control method taking into consideration of actuator saturation is proposed for a hypersonic scramjet vehicle (HSV) under a class of time‐varying actuator faults. The SMO is designed to robustly estimate the HSV states and reconstruct the fault signals. The adaptive technique is integrated into the SMO to approximate the unknown bounds of system uncertainties, actuator faults, and estimation errors. The robust SMO synthesis condition, which can be formulated as a set of linear matrix inequalities, is improved by relaxing structure constraints to the Lyapunov matrix. An anti‐windup feedback control law, which utilizes the estimated HSV states and the fault signals, is designed to counteract the negative effects of actuator saturation induced by actuator faults. Simulation results demonstrate that the proposed approach can guarantee stability and maintain performance of the closed‐loop system in the presence of HSV actuator faults and saturation.  相似文献   

4.
This article investigates the event‐triggered (ET) states feedback robust control problem for a class of continuous‐time networked semi‐Markov jump systems (S‐MJSs). An ET scheme, which depends on semi‐Markov process, is presented to design a suitable controller and save communication resources. To cope with the network transmission delay phenomenon, a time‐delay S‐MJSs model under the ET scheme is introduced to describe this phenomenon. Then, it is assumed that the communication links between event detector and zero‐order holder are imperfect, where the signal quantization and the actuator fault occur simultaneously. The sufficient conditions are derived by means of linear matrix inequalities approach, which guarantees the stochastic stability of the constructed time‐delay S‐MJSs in an optimized performance level. Based on these criteria, the parameters of controller under the ET scheme are readily calculated. Some simulation results with respect to F‐404 aircraft engine system for two kinds of ET parameters are given to validate the proposed method.  相似文献   

5.
This paper is concerned with the reliable static output control of linear time‐varying delay systems with sensor faults. Time‐varying delay is tackled by the input–output transformation and the resulting closed‐loop system lies in the framework of scaled small gain. Some techniques are developed to separate the coupling among the Lyapunov matrix, input matrix, control gain matrix, and output matrix. Based on a relaxed Lyapunov–Krasovskii functional, sufficient conditions for the desired static output controller design with the required performance level are proposed by means of linear matrix inequalities. The effectiveness of the proposed method is validated by two examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the passivity‐based control problem for a class of time‐varying delay systems subject to nonlinear actuator faults and randomly occurring uncertainties via fault‐tolerant controller. More precisely, the uncertainties are described in terms of stochastic variables, which satisfies Bernoulli distribution, and the existence of actuator faults are assumed not only linear but also nonlinear, which is a more general one. The main objective of this paper is to design a state feedback‐reliable controller such that the resulting closed‐loop time‐delay system is stochastically stable under a prescribed mixed and passivity performance level γ>0 in the presence of all admissible uncertainties and actuator faults. Based on Lyapunov stability method and some integral inequality techniques, a new set of sufficient conditions is obtained in terms of linear matrix inequality (LMI) constraints to ensure the asymptotic stability of the considered system. Moreover, the control design parameters can be computed by solving a set of LMI constraints. Finally, two examples including a quarter‐car model are provided to show the efficiency and usefulness of the proposed control scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Autonomous systems are rapidly becoming an integrated part of the modern life. Safe and secure navigation and control of these systems present significant challenges in the presence of uncertainties, physical failures, and cyber attacks. In this paper, we formulate a navigation and control problem for autonomous systems using a multilevel control structure, in which the high‐level reference commands are limited by a saturation function, whereas the low‐level controller tracks the reference by compensating for disturbances and uncertainties. For this purpose, we consider a class of nested, uncertain, multiple‐input–multiple‐output systems subject to reference command saturation, possibly with nonminimum phase zeros. A multirate output‐feedback adaptive controller is developed as the low‐level controller. The sampled‐data (SD) design of this controller facilitates the direct implementation on digital computers, where the input/output signals are available at discrete time instances with different sampling rates. In addition, stealthy zero‐dynamics attacks become detectable by considering a multirate SD formulation. Robust stability and performance of the overall closed‐loop system with command saturation and multirate adaptive control are analyzed. Simulation scenarios for navigation and control of a fixed‐wing drone under failures/attacks are provided to validate the theoretical findings.  相似文献   

8.
Robust control of parameter‐dependent input delay linear parameter‐varying (LPV) systems via gain‐scheduled dynamic output‐feedback control is considered in this paper. The controller is designed to provide disturbance rejection in the context of the induced ‐norm or the norm of the closed‐loop system in the presence of uncertainty and disturbances. A reciprocally convex approach is employed to bound the Lyapunov‐Krasovskii functional derivative and extract sufficient conditions for the controller characterization in terms of linear matrix inequalities (LMIs). The approach does not require the rate of the delay to be bounded, hence encompasses a broader family of input‐delay LPV systems with fast‐varying delays. The method is then applied to the air‐fuel ratio (AFR) control in spark ignition (SI) engines where the delay and the plant parameters are functions of the engine speed and mass air flow. The objectives are to track the commanded AFR signal and to optimize the performance of the three‐way catalytic converter (TWC) through the precise AFR control and oxygen level regulation, resulting in improved fuel efficiency and reduced emissions. The designed AFR controller seeks to provide canister purge disturbance rejection over the full operating envelope of the SI engine in the presence of uncertainties. Closed‐loop simulation results are presented to validate the controller performance and robustness while meeting AFR tracking and disturbance rejection requirements.  相似文献   

9.
This article investigates the flocking control problem of double-integrator multi-agent systems with a virtual leader subject to unknown external disturbances. A robust integral of sign of error (RISE) based control method is leveraged to design a distributed flocking controller with advantages of zero initial input value and continuous control input. By means of a new second-order differential virtual potential field function, and the navigational feedback from a virtual leader, the proposed flocking controller assures agents of velocity consensus with the virtual leader and a quasi -lattice formation within a circular neighborhood centered on the virtual leader. Moreover, this algorithm guarantees collision avoidance and connectivity preservation of a proximity-induced communication topology. Numerical simulations of the algorithm are provided to illustrate the effectiveness of the proposed flocking algorithm.  相似文献   

10.
This paper investigates the problem of adaptive fault‐tolerant control for a class of linear systems with time‐varying actuator faults. The outage and loss‐of‐effectiveness fault cases are covered. An active fault compensation control law was designed in two steps. Firstly, the time‐varying fault parameters were estimated based on a novel adaptive observer. Compared with the traditional adaptive observer, the actuator fault estimations are faster and the high‐frequency oscillations can be attenuated effectively. Such oscillations are usually caused by increasing the gains of adaptive laws to deal with abrupt changes in system dynamics. Then, based on online estimations of the fault parameters, an adaptive fault‐tolerant controller was constructed to compensate for the loss of actuator effectiveness and to eliminate the effect of fault estimation error. The asymptotic stability and an adaptive performance of a closed‐loop system can be guaranteed, even in the case of actuator faults and disturbances. Simulation results are given to verify the effectiveness and superiority of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The , and mixed dynamic output feedback control of Markov jump linear systems in a partial observation context is studied through an iterative approach. By partial information, we mean that neither the state variable x(k) nor the Markov chain θ(k) are available to the controller. Instead, we assume that the controller relies only on an output y(k) and a measured variable coming from a detector that provides the only information of the Markov chain θ(k). To solve the problem, we resort to an iterative method that starts with a state‐feedback controller and solves at each iteration a linear matrix inequality optimization problem. It is shown that this iterative algorithm yields to a nonincreasing sequence of upper bound costs so that it converges to a minimum value. The effectiveness of the iterative procedure is illustrated by means of two examples in which the conservatism between the upper bounds and actual costs is significantly reduced.  相似文献   

12.
Linear discrete‐time systems with stochastic and deterministic polytopic type uncertainties in their state‐space model are considered. A dynamic output‐feedback controller is obtained via a new approach that allows a derivation of a controller in spite of parameter uncertainty. In the proposed approach, the system is described via a difference equation and an augmented system is then used to obtain the output‐feedback controller parameters. The controller is obtained without assuming a specific structure to the quadratic Lyapunov function, and it is the first time that an output‐feedback controller is obtained for robust state‐multiplicative systems. The controller minimizes the stochastic L2‐gain of the closed‐loop where a cost function is defined to be the expected value of the standard performance index with respect to the stochastic uncertainty. Two examples are given where the second of which demonstrates the applicability of our theory to a robot manipulator system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
An observer‐based output feedback predictive control approach is proposed for linear parameter varying systems with norm‐bounded external disturbances. Sufficient and necessary robust positively invariant set conditions of the state estimation error are developed to determine the minimal ellipsoidal robust positively invariant set and observer gain through offline computation. The quadratic upper bound of state estimation error is updated and included in an ‐type cost function of predictive control to optimize transient output feedback control performance. Recursive feasibility of the dynamic convex optimization problem is guaranteed in the proposed predictive control strategy. With the input‐to‐state stable observer, the closed‐loop control system states are steered into a bounded set. Simulation results are given to demonstrate the effectiveness of the proposed control strategy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This article addresses a novel technique for the simultaneous design of a robust nonlinear controller and static anti‐windup compensator (AWC) for uncertain nonlinear systems under actuator saturation and exogenous bounded input. The system is presumed to have locally Lipschitz nonlinearities, time‐varying uncertainties (appearing both in the linear as well as nonlinear dynamics and both in the state in addition to the output equations), and external norm‐bounded inputs both in the state and the output equations. Several bilinear matrix inequality–based conditions are derived to simultaneously design the robust nonlinear controller and AWC gains for uncertain nonlinear systems by employing the Lyapunov functional, reformulated Lipschitz property, uncertainty bounds, linear parameter‐varying approach, modified local and global sector conditions, iterative linear matrix inequality algorithm, convex optimization procedure, and gain minimization. The proposed multiobjective AWC‐based dynamic robust nonlinear controller guarantees the mitigation of saturation effects, robustness against time‐varying parametric norm‐bounded uncertainties, the asymptotic stability of the closed‐loop nonlinear system under zero external disturbances, and the attenuation of disturbance effects under nonzero external disturbances. The effectiveness of the proposed AWC‐based dynamic robust nonlinear controller synthesis scheme is illustrated by simulation examples.  相似文献   

15.
This paper is devoted to the design of a novel fault‐tolerant control (FTC) using the combination of a robust sliding‐mode control (SMC) strategy and a control allocation (CA) algorithm, referred to as a CA‐based sliding‐mode FTC (SMFTC). The proposed SMFTC can also be considered a modular‐design control strategy. In this approach, first, a high‐level SMC, designed without detailed knowledge of systems' actuators/effectors, commands a vector of virtual control signals to meet the overall control objectives. Then, a CA algorithm distributes the virtual control efforts among the healthy actuators/effectors using the real‐time information obtained from a fault detection and reconstruction mechanism. As the underlying system is not assumed to have a rank‐deficient input matrix, the control allocator module is visible to the SMC module resulting in an uncertainty. Hence, the virtual control, in this scheme, is designed to be robust against uncertainties emanating from the visibility of the control allocator to the controller and imperfections in the estimated effectiveness gain. The proposed CA‐based SMFTC scheme is a unified FTC, which does not need to reconfigure the control system in the case of actuator fault or failure. Additionally, to cope with actuator saturation limits, a novel redistributed pseudoinverse‐based CA mechanism is proposed. The effectiveness of the proposed schemes is discussed with a numerical example.  相似文献   

16.
Linear matrix inequality (LMI) design conditions for gain‐scheduled output‐feedback control rely on assumptions constraining either system or controller matrices. Throughout the literature, it is common practice to avoid imposing restrictive assumptions on the controller, which may appear undesirable, in favor of state augmentations via pre‐filtering and post‐filtering to construct auxiliary augmented systems that comply with the alternative assumptions on the system matrices. This technique brings in the additional cost of increased state dimensions of the resulting gain‐scheduled output‐feedback controllers. In this paper, we explore the interplay and inherent trade‐offs between state augmentation, controller structure, and performance. We revisit LMI design conditions for quadratic output‐feedback control and demonstrate that state augmentation via pre‐filtering and post‐filtering in order to avoid constraints on the controller matrices is never advantageous even without taking into account the added complexity and propensity for numerical issues associated with state augmentation. As an additional contribution, we extend this observation to recently introduced modified LMI conditions allowing combined – however less restrictive – assumptions on system and controller matrices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is devoted to output‐feedback adaptive control for a class of multivariable nonlinear systems with both unknown parameters and unknown nonlinear functions. Under the Hurwitz condition for the high‐frequency gain matrix, a robust adaptive backstepping control scheme is proposed, which is able to guarantee the tracking performance and needs only one parameter to be updated online regardless of the system order and input–output dimension. To cope with the unknown nonlinear functions and improve the tracking performance, a kind of high‐gain K‐filters is introduced. It is proved that all signals of the closed‐loop system are globally uniformly bounded. Simulation results on coupled inverted double pendulums are presented to illustrate the effectiveness of the proposed scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper focuses on the problem of finite‐time H control for one family of discrete‐time uncertain singular Markovian jump systems with sensor fault and randomly occurring nonlinearities through a sliding mode approach. The failure of sensor is described as a general and practical continuous fault model. Nonlinear disturbance satisfies the Lipschitz condition and occurs in a probabilistic way. Firstly, based on the state estimator, the discrete‐time close‐loop error system can be constructed and sufficient criteria are provided to guarantee the augment system is sliding mode finite‐time boundedness and sliding mode H finite‐time boundedness. The sliding mode control law is synthesized to guarantee the reachability of the sliding surface in a short time interval, and the gain matrices of state feedback controller and state estimator are achieved by solving a feasibility problem in terms of linear matrix inequalities through a decoupling technique. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

19.
This paper considers a dynamic output‐feedback control for continuous‐time singular Markovian jump systems, whereas the existing research studies in literature focused on state‐feedback or static output‐feedback control. While they have only provided the sufficient conditions, this paper successfully obtains the necessary and sufficient condition for the existence of the dynamic output‐feedback control. Furthermore, this condition is expressed with linear matrix inequalities by the so‐called replacement technique. Two numerical examples show the validity of the resulting control.  相似文献   

20.
This paper deals with the task‐space trajectory tracking control problem of robot manipulators. An improved adaptive backstepping controller is proposed to deal with the uncertainties in kinematics, dynamics, and actuator modeling. To avoid the explosion of computation in conventional backstepping techniques, a modified dynamic surface control algorithm is proposed, which guarantees the asymptotic convergence rather than the uniformly ultimately boundedness of tracking errors in conventional dynamic surface control methods. Furthermore, the expression of the norm of tracking errors is explicitly derived in relation to the controller parameters, which provides instructions on tuning controller parameters to adjust the system performance. Moreover, the passivity structure of the designed adaptation law is thoroughly analyzed. Simulation of a free‐floating space robot is used to verify the effectiveness of the proposed control strategy in comparison with the conventional tracking control schemes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号