首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on the distributed event‐triggered fixed‐time consensus control problem of leader‐follower multiagent systems with nonlinear dynamics and uncertain disturbances. Two distributed fixed‐time consensus protocols are proposed based on distributed event‐triggered strategies, which can substantially reduce energy consumption and the frequency of the controller updates. It is proved that under the proposed distributed event‐triggered consensus tracking control strategies, the Zeno behavior is avoided. Compared with the finite‐time consensus tracking, the fixed‐time consensus tracking can be achieved within a settling time regardless of the initial conditions. Finally, 2 examples are performed to validate the effectiveness of the distributed event‐triggered fixed‐time consensus tracking controllers.  相似文献   

2.
This paper studies the leader‐following consensus problem for Lipschitz nonlinear multi‐agent systems using novel event‐triggered controllers. A distributed adaptive law is introduced for the event‐based control strategy design such that the proposed controllers are independent of system parameters and only use the relative states of neighboring agents, and hence are fully distributed. Due to the introduction of an event‐triggered control scheme, the controller of the agent is only triggered at it's own event times, and thus reduces the amount of communication between controller and actuator and lowers the frequency of controller updates in practice. Based on a quadratic Lyapunov function, the event condition which uses only neighbor information and local computation at trigger instants is established. Infinite triggers within a finite time are also verified to be impossible. The effectiveness of the theoretical results are illustrated through simulation examples.  相似文献   

3.
This paper addresses the finite‐time and the prescribed finite‐time event‐triggered consensus tracking problems for second‐order multi‐agent systems (MASs) with uncertain disturbances. The prescribed finite‐time event‐triggered consensus of the second‐order disturbed MASs was obtained for the first time and the controller is nonsingular. Furthermore, a new self‐triggered control scheme is presented for the finite‐time consensus tracking, and the continuous communication can be avoided in the triggering condition monitoring. Hence, the finite‐time consensus tracking can be achieved with intermittent communication. Moreover, Zeno behavior is excluded for each follower. The efficiency of the proposed algorithms is verified by numerical simulations.  相似文献   

4.
This work addresses the finite‐time optimal control problem for a class of interconnected nonlinear systems with powers of positive odd rational numbers. A series of homogeneous controllers, which are capable of guaranteeing the local finite‐time stability of the closed‐loop systems, are first developed using the adding one power integrator method and backstepping technique. Then, the nested saturation controllers are further proposed to achieve global finite‐time stability. Furthermore, the corresponding design parameters are optimized, and thus, an optimal controller is obtained. A numerical simulation example is finally given to illustrate the effectiveness of the proposed control strategy.  相似文献   

5.
This article investigates the event‐triggered finite‐time reliable control problem for a class of Markovian jump systems with time‐varying transition probabilities, time‐varying actuator faults, and time‐varying delays. First, a Luenberger observer is constructed to estimate the unmeasured system state. Second, by applying an event‐triggered strategy from observer to controller, the frequency of transmission is reduced. Third, based on linear matrix inequality technique and stochastic finite‐time analysis, event‐triggered observer‐based controllers are designed and sufficient conditions are given, which ensure the finite‐time boundedness of the closed‐loop system in an H sense. Finally, an example is utilized to show the effectiveness of the proposed controller design approach.  相似文献   

6.
This paper investigates the finite‐time consensus problem for multi‐agent systems with second‐order individual dynamics under switching topologies. A distributed continuous‐time protocol is designed to guarantee finite‐time consensus for homogeneous agents without predetermined leaders, i.e., it ensures agents asymptotically converge to an average consensus within finite time, even if the interaction topology among them is time‐varying but stepwise jointly‐connected. In particular, it introduces a distributed continuous‐time protocol to reach consensus in finite time and reduce the chattering together. Finally, the simulation results are also given to validate the proposed approach.  相似文献   

7.
This article addresses the problem of global adaptive finite‐time control for a class of p‐normal nonlinear systems via an event‐triggered strategy. A state feedback controller is first designed for the nominal system by adding a power integrator method. Then, by the skillful design of adaptive dynamic gain mechanism, a novel event‐triggered controller is constructed for uncertain nonlinear system without homogeneous growth condition. It is proved that the global finite‐time stabilization of p‐normal nonlinear systems is guaranteed and the Zeno phenomenon is excluded. Finally, two examples are presented to indicate the effectiveness of the proposed control scheme.  相似文献   

8.
This paper presents synthesis conditions for the design of gain‐scheduled dynamic output feedback controllers for discrete‐time linear parameter‐varying systems. The state‐space matrix representation of the plant and of the controller can have a homogeneous polynomial dependency of arbitrary degree on the scheduling parameter. As an immediate extension, conditions for the synthesis of a multiobjective ?? and ??2 gain‐scheduled dynamic feedback controller are also provided. The scheduling parameters vary inside a polytope and are assumed to be a priori unknown, but measured in real‐time. If bounds on the rate of parameter variation are known, they can be taken into account, providing less conservative results. The geometric properties of the uncertainty domain are exploited to derive finite sets of linear matrix inequalities based on the existence of a homogeneous polynomially parameter‐dependent Lyapunov function. An application of the control design to a realistic engineering problem illustrates the benefits of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the finite‐time tracking problem is investigated for a nonholonomic wheeled mobile robot in a fifth‐order dynamic model. We consider the whole tracking error system as a cascaded system. Two continuous global finite‐time stabilizing controllers are designed for a second‐order subsystem and a third‐order subsystem respectively. Then finite‐time stability results for cascaded systems are employed to prove that the closed‐loop system satisfies the finite‐time stability. Thus the closed‐loop system can track the reference trajectory in finite‐time when the desired velocities satisfy some conditions. In particular, we discuss the control gains selection for the third‐order finite‐time controller and give sufficient conditions by using Lyapunov and backstepping techniques. Simulation results demonstrate the effectiveness of our method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

10.
This paper considers the global finite‐time output feedback stabilization of a class of nonlinear high‐order feedforward systems. By using the homogeneous domination method together with adding a power integrator method and overcoming several troublesome obstacles in the design and analysis, a global finite‐time output feedback controller with reduced‐order observer is recursively designed to globally finite‐time stabilize nonlinear high‐order feedforward systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, we present a constructive method to design a family of virtual contraction based controllers that solve the standard trajectory tracking problem of flexible‐joint robots in the port‐Hamiltonian framework. The proposed design method, called virtual contraction based control, combines the concepts of virtual control systems and contraction analysis. It is shown that under potential energy matching conditions, the closed‐loop virtual system is contractive and exponential convergence to a predefined trajectory is guaranteed. Moreover, the closed‐loop virtual system exhibits properties such as structure preservation, differential passivity, and the existence of (incrementally) passive maps. The method is later applied to a planar RR robot, and two nonlinear tracking control schemes in the developed controllers family are designed using different contraction analysis approaches. Experiments confirm the theoretical results for each controller.  相似文献   

12.
In this paper, the problem of boundary finite‐time stabilization is considered for reaction‐diffusion systems (RDSs). First, a full‐domain controller is designed, and sufficient conditions are given to ensure finite‐time stability of RDSs under the designed controller. Then, for practical applications, a boundary controller is designed to obtain finite‐time stability. By virtue of the finite‐time stability lemma, criteria are presented to guarantee the finite‐time stability of RDSs for the Neumann boundary conditions and the mixed boundary conditions. As an extension to uncertain RDSs, robust finite‐time stabilization is studied, and criterion is obtained under the boundary control. Numerical simulations verify the effectiveness of the proposed design techniques.  相似文献   

13.
This paper considers the global finite‐time output‐feedback stabilization for a class of uncertain nonlinear systems. Comparing with the existing related literature, two essential obstacles exist: On the one hand, the systems in question allow serious parametric unknowns and serious time variations coupling to the unmeasurable states, which is reflected in that the systems have the unmeasurable states dependent growth with the rate being an unknown constant multiplying a known continuous function of time. On the other hand, the systems possess remarkably inherent nonlinearities, whose growth allows to be not only low‐order but especially high‐order with respect to the unmeasurable states. To effectively cope with these obstacles, we established a time‐varying output‐feedback strategy to achieve the finite‐time stabilization for the systems under investigation. First, a time‐varying state‐feedback controller is constructed by adding an integrator method, and by homogeneous domination approach, a time‐varying reduced‐order observer is designed to precisely rebuild the unmeasurable states. Then, by certainty equivalence principle, a desired time‐varying output‐feedback controller is constructed for the systems. It is shown that, as long as the involved time‐varying gain is chosen fast enough to overtake the serious parametric unknowns and the serious time variations, the output‐feedback controller renders that the closed‐loop system states converge to zero in finite time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with the problem of finite‐time stabilization for some nonlinear stochastic systems. Based on the stochastic Lyapunov theorem on finite‐time stability that has been established by the authors in the paper, it is proven that Euler‐type stochastic nonlinear systems can be finite‐time stabilized via a family of continuous feedback controllers. Using the technique of adding a power integrator, a continuous, global state feedback controller is constructed to stabilize in finite time a large class of two‐dimensional lower‐triangular stochastic nonlinear systems. Also, for a class of three‐dimensional lower‐triangular stochastic nonlinear systems, a recursive design scheme of finite‐time stabilization is given by developing the technique of adding a power integrator and constructing a continuous feedback controller. Finally, a simulation example is given to illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
本文主要基于能量整形方案研究具有通讯时滞网络化欠驱动Euler-Lagrange (EL)系统的一致性问题,通过利用阻尼注入和互连分配的无源控制(PBC)技术,在有向连通网络拓扑下提出了一个简单的分布式协议,来实现在无引导者和有引导者-跟随者两种情形下欠驱动EL网络的一致性. 本文提出的一致性能量整形方案的主要特点是有机地整合了系统欠驱动和驱动部分以及控制器三部分能量作为整个系统的总能量,这个总能量被利用作为一个合适的Lyapunov函数,它能够充分确保网络化欠驱动EL系统达到所期望的分布式一致性. 最后,通过由欠驱动EL网络所描述柔性关节机械臂系统的数值模拟,来分析通讯时滞对一致性的效应和验证所提出控制算法的正确性.  相似文献   

16.
In this paper, a new method, applying the fuzzy logic system, is proposed to discretize the continuous‐time controller in computer‐controlled systems. All the continuous‐time controllers can be reconstructed by the proposed method under the Sampling Theorem. That is, the fuzzy logic systems are used to add nonlinearity and to approximate smooth functions. Hence, the proposed controller is a new smooth controller that can replace the original controller, independent of the sampling time under the Sampling Theorem. Consequently, the proposed controller not only can discretize the continuous‐time controllers, but also can tolerate a wider range of sampling time uncertainty. Besides, the input‐output stability is proposed for discretizing the continuous‐time controller of the fuzzy logic systems. Finally, computer simulation shows that the proposed method can easily reconstructthe continuous‐time controller and has very good robustness for different sampling times.  相似文献   

17.
This paper investigates the problem of finite‐time output‐feedback stabilization of a class of high‐order nonholonomic systems under weaker conditions on system powers and nonlinearities. By constructing the appropriate Lyapunov function and observer, skillfully combining generalized adding a power integrator technique, sign function, and homogeneous domination method, and successfully introducing a new mathematical method, an output‐feedback controller is constructed to guarantee that all the states of the closed‐loop system converge to origin in a finite time.  相似文献   

18.
In this paper, we present a robust adaptive control algorithm for a class of bilateral teleoperation systems with system uncertainties and jittering time delays. The remarkable feature of jittering delays is that time delays change sharply and randomly. Conventional controllers would fail because jittering time delays introduce serious chattering. To address the jittering issue, a novel jittering‐free scheme is developed by relaxing and extending the frequently used constant upper bound. Moreover, an adaptive law was incorporated with the Chebyshev neural network to deal with the system uncertainties. To obtain finite‐time synchronization performance, a fast terminal sliding mode controller is proposed through the technique of “adding a power integrator.” With the proposed control scheme, the robust finite‐time convergence performance is guaranteed. The settling time can be further calculated with the controller parameters. The simulation and experiment results have demonstrated the effectiveness of the proposed method.  相似文献   

19.
This paper presents a distributed integrated fault diagnosis and accommodation scheme for leader‐following formation control of a class of nonlinear uncertain second‐order multi‐agent systems. The fault model under consideration includes both process and actuator faults, which may evolve abruptly or incipiently. The time‐varying leader communicates with a small subset of follower agents, and each follower agent communicates to its directly connected neighbors through a bidirectional network with possibly asymmetric weights. A local fault diagnosis and accommodation component are designed for each agent in the distributed system, which consists of a fault detection and isolation module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault‐tolerant controllers, activated after fault detection and after fault isolation, respectively. By using appropriately the designed Lyapunov functions, the closed‐loop stability and asymptotic convergence properties of the leader‐follower formation are rigorously established under different modes of the fault‐tolerant control system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号